--- license: mit base_model: indobenchmark/indobert-base-p2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: story_model results: [] --- # story_model This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co./indobenchmark/indobert-base-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2923 - Accuracy: 0.9409 - F1: 0.9043 - Precision: 0.9087 - Recall: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.53 | 50 | 0.5324 | 0.8978 | 0.8032 | 0.9009 | 0.7572 | | No log | 1.06 | 100 | 0.2795 | 0.9355 | 0.8967 | 0.8967 | 0.8967 | | No log | 1.6 | 150 | 0.2561 | 0.9194 | 0.8772 | 0.8608 | 0.8972 | | No log | 2.13 | 200 | 0.3274 | 0.9194 | 0.8635 | 0.8871 | 0.8444 | | No log | 2.66 | 250 | 0.2756 | 0.9247 | 0.8819 | 0.8745 | 0.89 | | No log | 3.19 | 300 | 0.4554 | 0.9032 | 0.8302 | 0.8696 | 0.8028 | | No log | 3.72 | 350 | 0.2333 | 0.9462 | 0.9157 | 0.9075 | 0.9244 | | No log | 4.26 | 400 | 0.4101 | 0.9247 | 0.8711 | 0.9013 | 0.8478 | | No log | 4.79 | 450 | 0.2826 | 0.9409 | 0.9063 | 0.9021 | 0.9106 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0