Model save
Browse files
README.md
CHANGED
@@ -2,8 +2,6 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy
|
4 |
tags:
|
5 |
-
- automatic-speech-recognition
|
6 |
-
- ./data-configs/btb.json
|
7 |
- generated_from_trainer
|
8 |
metrics:
|
9 |
- wer
|
@@ -19,8 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy](https://huggingface.co/DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss:
|
23 |
-
- Wer: 0.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -53,56 +51,56 @@ The following hyperparameters were used during training:
|
|
53 |
|
54 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
55 |
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
56 |
-
| No log | 0.
|
57 |
-
| No log | 0.
|
58 |
-
| 2.
|
59 |
-
| 2.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
|
107 |
|
108 |
### Framework versions
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- wer
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy](https://huggingface.co/DewiBrynJones/wav2vec2-xlsr-53-ft-btb-cv-cy) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: inf
|
21 |
+
- Wer: 0.3402
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
54 |
+
| No log | 0.0215 | 200 | inf | 0.5592 |
|
55 |
+
| No log | 0.0429 | 400 | inf | 0.4289 |
|
56 |
+
| 2.1964 | 0.0644 | 600 | inf | 0.4374 |
|
57 |
+
| 2.1964 | 0.0858 | 800 | inf | 0.4944 |
|
58 |
+
| 0.8327 | 0.1073 | 1000 | inf | 0.5150 |
|
59 |
+
| 0.8327 | 0.1287 | 1200 | inf | 0.5634 |
|
60 |
+
| 0.8327 | 0.1502 | 1400 | inf | 0.5355 |
|
61 |
+
| 0.91 | 0.1716 | 1600 | inf | 0.5152 |
|
62 |
+
| 0.91 | 0.1931 | 1800 | inf | 0.5595 |
|
63 |
+
| 0.8721 | 0.2145 | 2000 | inf | 0.5057 |
|
64 |
+
| 0.8721 | 0.2360 | 2200 | inf | 0.5041 |
|
65 |
+
| 0.8721 | 0.2574 | 2400 | inf | 0.5146 |
|
66 |
+
| 0.8218 | 0.2789 | 2600 | inf | 0.5018 |
|
67 |
+
| 0.8218 | 0.3003 | 2800 | inf | 0.5091 |
|
68 |
+
| 0.8469 | 0.3218 | 3000 | inf | 0.5037 |
|
69 |
+
| 0.8469 | 0.3432 | 3200 | inf | 0.4703 |
|
70 |
+
| 0.8469 | 0.3647 | 3400 | inf | 0.4795 |
|
71 |
+
| 0.8142 | 0.3861 | 3600 | inf | 0.4714 |
|
72 |
+
| 0.8142 | 0.4076 | 3800 | inf | 0.4554 |
|
73 |
+
| 0.8085 | 0.4290 | 4000 | inf | 0.4506 |
|
74 |
+
| 0.8085 | 0.4505 | 4200 | inf | 0.4458 |
|
75 |
+
| 0.8085 | 0.4720 | 4400 | inf | 0.4367 |
|
76 |
+
| 0.7802 | 0.4934 | 4600 | inf | 0.4401 |
|
77 |
+
| 0.7802 | 0.5149 | 4800 | inf | 0.4334 |
|
78 |
+
| 0.7493 | 0.5363 | 5000 | inf | 0.4224 |
|
79 |
+
| 0.7493 | 0.5578 | 5200 | inf | 0.4328 |
|
80 |
+
| 0.7493 | 0.5792 | 5400 | inf | 0.4176 |
|
81 |
+
| 0.7668 | 0.6007 | 5600 | inf | 0.4183 |
|
82 |
+
| 0.7668 | 0.6221 | 5800 | inf | 0.4030 |
|
83 |
+
| 0.6999 | 0.6436 | 6000 | inf | 0.4125 |
|
84 |
+
| 0.6999 | 0.6650 | 6200 | inf | 0.4076 |
|
85 |
+
| 0.6999 | 0.6865 | 6400 | inf | 0.3917 |
|
86 |
+
| 0.6918 | 0.7079 | 6600 | inf | 0.4004 |
|
87 |
+
| 0.6918 | 0.7294 | 6800 | inf | 0.3865 |
|
88 |
+
| 0.6888 | 0.7508 | 7000 | inf | 0.3785 |
|
89 |
+
| 0.6888 | 0.7723 | 7200 | inf | 0.3824 |
|
90 |
+
| 0.6888 | 0.7937 | 7400 | inf | 0.3743 |
|
91 |
+
| 0.646 | 0.8152 | 7600 | inf | 0.3673 |
|
92 |
+
| 0.646 | 0.8366 | 7800 | inf | 0.3667 |
|
93 |
+
| 0.6324 | 0.8581 | 8000 | inf | 0.3662 |
|
94 |
+
| 0.6324 | 0.8795 | 8200 | inf | 0.3601 |
|
95 |
+
| 0.6324 | 0.9010 | 8400 | inf | 0.3535 |
|
96 |
+
| 0.6221 | 0.9224 | 8600 | inf | 0.3526 |
|
97 |
+
| 0.6221 | 0.9439 | 8800 | inf | 0.3487 |
|
98 |
+
| 0.6215 | 0.9654 | 9000 | inf | 0.3481 |
|
99 |
+
| 0.6215 | 0.9868 | 9200 | inf | 0.3447 |
|
100 |
+
| 0.6215 | 1.0083 | 9400 | inf | 0.3410 |
|
101 |
+
| 0.5603 | 1.0297 | 9600 | inf | 0.3405 |
|
102 |
+
| 0.5603 | 1.0512 | 9800 | inf | 0.3412 |
|
103 |
+
| 0.5284 | 1.0726 | 10000 | inf | 0.3402 |
|
104 |
|
105 |
|
106 |
### Framework versions
|