File size: 1,710 Bytes
817ecfc 074009f 817ecfc 074009f 817ecfc 074009f 817ecfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-hi-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-hi-1
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7841
- Wer: 52.1739
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0001 | 30.77 | 200 | 0.7062 | 54.3478 |
| 0.0 | 61.54 | 400 | 0.7435 | 56.5217 |
| 0.0 | 92.31 | 600 | 0.7661 | 54.3478 |
| 0.0 | 123.08 | 800 | 0.7792 | 54.3478 |
| 0.0 | 153.85 | 1000 | 0.7841 | 52.1739 |
### Framework versions
- Transformers 4.39.2
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|