--- license: [apache-2.0, gemma] datasets: - traintogpb/aihub-koen-translation-integrated-base-10m language: - ko - en pipeline_tag: translation tags: - gemma --- # Gemago Model Card **Original Gemma Model Page**: [Gemma](https://ai.google.dev/gemma/docs) **Model Page On Github**: [Gemago](https://github.com/deveworld/Gemago) **Resources and Technical Documentation**: * [Blog(Korean)](https://blog.worldsw.dev/tag/gemago/) * [Original Google's Gemma-2B](https://huggingface.co./google/gemma-2b) * [Training Code @ Github: Gemma-EasyLM (Orginial by Beomi)](https://github.com/deveworld/Gemma-EasyLM/tree/2b) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Orginal Google, Fine-tuned by DevWorld ## Model Information Translate English/Korean to Korean/English. ### Description Gemago is a lightweight English-and-Korean translation model based on Gemma. ### Context Length Models are trained on a context length of 8192 tokens, which is equivalent to Gemma. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U keras keras-nlp`, then copy the snippet from the section that is relevant for your usecase. #### Running the model with transformers [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deveworld/Gemago/blob/main/Gemago_2b_Infer.ipynb) ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("devworld/gemago-2b") model = AutoModelForCausalLM.from_pretrained("devworld/gemago-2b") def gen(text, max_length): input_ids = tokenizer(text, return_tensors="pt") outputs = model.generate(**input_ids, max_length=max_length) return tokenizer.decode(outputs[0]) def e2k(e): input_text = f"English:\n{e}\n\nKorean:\n" return gen(input_text, 1024) def k2e(k): input_text = f"Korean:\n{k}\n\nEnglish:\n" return gen(input_text, 1024) ```