--- language: - en license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.1 metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Dev372/Medical_STT_Dataset_1.1 args: 'split: test' metrics: - name: Wer type: wer value: 6.554753584375714 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co./openai/whisper-tiny.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1509 - Wer: 6.5548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 18 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.3263 | 0.2825 | 100 | 1.1474 | 12.0219 | | 0.8292 | 0.5650 | 200 | 0.8086 | 9.9840 | | 0.5971 | 0.8475 | 300 | 0.5736 | 9.0597 | | 0.2888 | 1.1299 | 400 | 0.3038 | 8.2465 | | 0.172 | 1.4124 | 500 | 0.2112 | 7.5835 | | 0.1499 | 1.6949 | 600 | 0.1839 | 7.0773 | | 0.1347 | 1.9774 | 700 | 0.1693 | 6.6691 | | 0.0977 | 2.2599 | 800 | 0.1650 | 6.7834 | | 0.0966 | 2.5424 | 900 | 0.1578 | 7.0381 | | 0.0877 | 2.8249 | 1000 | 0.1542 | 6.6462 | | 0.0587 | 3.1073 | 1100 | 0.1539 | 6.5090 | | 0.0642 | 3.3898 | 1200 | 0.1531 | 6.5646 | | 0.0597 | 3.6723 | 1300 | 0.1518 | 6.5090 | | 0.0754 | 3.9548 | 1400 | 0.1511 | 6.5254 | | 0.0506 | 4.2373 | 1500 | 0.1509 | 6.5548 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1