Delta-Vector
commited on
Upload folder using huggingface_hub
Browse files- config.json +28 -0
- generation_config.json +7 -0
- global_step440/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt +3 -0
- global_step440/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt +3 -0
- global_step440/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_8_mp_rank_00_model_states.pt +3 -0
- global_step440/zero_pp_rank_9_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +370 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- rng_state_8.pth +3 -0
- rng_state_9.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- trainer_state.json +3113 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML",
|
3 |
+
"activation": "silu",
|
4 |
+
"architectures": [
|
5 |
+
"MistralForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 11520,
|
15 |
+
"max_position_embeddings": 16384,
|
16 |
+
"model_type": "mistral",
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"num_hidden_layers": 40,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.45.0.dev0",
|
26 |
+
"use_cache": false,
|
27 |
+
"vocab_size": 131072
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.45.0.dev0"
|
7 |
+
}
|
global_step440/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4e1892fccb1f5b61519c4b68054eb77f3e364612fafd12d51eb02824cacc5f4
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d45eeb8987a65b2a8ae2bc04dd0b993c01b0c91117cfe7eff2e8dc0b0c19e78e
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2e9f69689b19310197439af58fecb918f5e5e7c2d240073bdb6e8f5a45fd321
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:515754c2930bd8918f50be39b4b2fafb1d153a06749afcc6401b41097a66f9fa
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56c97cfc4690ed2c1b978d20f910b34d7e593fcb2f876f4c627035a2fc702389
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01cf4e5ed54b0b60dd6d33fb094c741d25cb3687d1fffbfabad1424c62711799
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cce19161455549a5dd67aad8fe5e56ad1a76451ee76ab34826481a90a0772d2a
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4993dd64d9b37987b01c0487015a9d965f78504ece3cc950378b0286ed21444
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:510440f9ea474120d4d7f337c53162fa4b0f0352312803323c7ba45f9b43cfa8
|
3 |
+
size 5053293693
|
global_step440/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:657702f6b16019d2f433482d197a9f4bfb9784cd12e1ab29277944d38e5f6fd9
|
3 |
+
size 5053293693
|
global_step440/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aecba0a00aa37a5f2a9097df806298a0c1c2ffd84ca73f226cadbd3ce7b454c2
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ca983d986f730827db4f114406f0eabf3bbf31cf41f02aff3eaa9b218697920
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e66df0220565c235cc534097605a9af3c7ab4a194bc903b533ba54fd819fb7cc
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e142494c598b04dc08349e81bb4a694d10e8c236af7f381cf464a063dae1288b
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:453d93994c1ca32e4481560b977f05611a1924408a7133ee8c254661c274f1cd
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6d7b46d677e236130acce354fc4bb7af0268947ab0f1e0964a2f29b55d67474
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6a92dedc539cebf843b12116d7f17900e303a1652ea831112dfebd20c5e39e5
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9384d62406e7476229a0323dd57d5c2b233367e09b885406d68244f48a6b9ab
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_8_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90ca32adda8e8d31a105368abafce1aad0e2c573b45cf208352395b6dd59c5dd
|
3 |
+
size 189645
|
global_step440/zero_pp_rank_9_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaee2c424aa1b7808a13829a8e7e88044b10f872c9c53cca32598197eb2c9178
|
3 |
+
size 189645
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step440
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cb8232c10e49a54006ef8f4a3f582416702fc7a6e93f46ddce37de7eac2546b
|
3 |
+
size 4922190736
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85502b4ccb9e876f680020d2957bf483860e9185b5a3ac5cd5b9aa1fbc400344
|
3 |
+
size 4993562512
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bf5e91f236a32432bdd544abbf7acab898912a62971272336851ea044ff3772
|
3 |
+
size 4915951392
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb12053ec87b7b13a01b8f40441b2e0c36b6f1e13c2842d40afb674208824311
|
3 |
+
size 1996548832
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16828211200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
368 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
369 |
+
}
|
370 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0aa8d754b2ad5fb3d2883bd456cfa6efeb1eac60c747ce65e79c96c06d528f3
|
3 |
+
size 16433
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b9849ab72a5239e50f978600bc70a15bb6e61cb0a305921395701a1830d5bdb
|
3 |
+
size 16433
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ad578b84fb357d56561532e7d9081a21829b3411289d156b0e3acd82e6f4b2a
|
3 |
+
size 16433
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:460106a5e058f8ed54eb8092eae8ea5e3637e45537a05ed2b1f5352e2f2658a1
|
3 |
+
size 16433
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6ba57c5ad6b6b514b6167b7009fbca3b23e278503129319b9a50b3b200fd0bb
|
3 |
+
size 16433
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2bd6a33cbc36a6489cc21248f1403d2add8dba68b5b33f7ba4942b965b48729
|
3 |
+
size 16433
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40c27d75a3d8a92ab7ab1db8a675621b8dfc51d774b579d5817a1b5cc3de3794
|
3 |
+
size 16433
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeaf9e5ec5202e12cb139961f8dcf1188e96c05a823842dc3b3535830181c19c
|
3 |
+
size 16433
|
rng_state_8.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d5306c3330ce0adb54843ea6d22dd15d8865ec287d3d0ee1fb2977a636645ec
|
3 |
+
size 16433
|
rng_state_9.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7920b162e3da8f1a3dda9fa9982d5ec65916bd8f2cb62ef1b327c65abab79c25
|
3 |
+
size 16433
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2292bbec4711f1db4b36e855be7557f1c648808b793f674077cd57b7cf585b84
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|im_end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,3113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.5071225071225074,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 440,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0056657223796034,
|
13 |
+
"grad_norm": 24.973131796915897,
|
14 |
+
"learning_rate": 1.0000000000000002e-06,
|
15 |
+
"loss": 1.8537,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0113314447592068,
|
20 |
+
"grad_norm": 32.79573813738381,
|
21 |
+
"learning_rate": 2.0000000000000003e-06,
|
22 |
+
"loss": 2.0212,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0169971671388102,
|
27 |
+
"grad_norm": 23.800880905805656,
|
28 |
+
"learning_rate": 3e-06,
|
29 |
+
"loss": 2.1456,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0226628895184136,
|
34 |
+
"grad_norm": 19.091198715081358,
|
35 |
+
"learning_rate": 4.000000000000001e-06,
|
36 |
+
"loss": 1.9808,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.028328611898016998,
|
41 |
+
"grad_norm": 14.124470348172405,
|
42 |
+
"learning_rate": 5e-06,
|
43 |
+
"loss": 2.1825,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0339943342776204,
|
48 |
+
"grad_norm": 11.461608032959802,
|
49 |
+
"learning_rate": 6e-06,
|
50 |
+
"loss": 1.6353,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.039660056657223795,
|
55 |
+
"grad_norm": 10.354681496346823,
|
56 |
+
"learning_rate": 7e-06,
|
57 |
+
"loss": 1.9076,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.0453257790368272,
|
62 |
+
"grad_norm": 10.167669680172194,
|
63 |
+
"learning_rate": 8.000000000000001e-06,
|
64 |
+
"loss": 1.4754,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.05099150141643059,
|
69 |
+
"grad_norm": 7.5541696713086255,
|
70 |
+
"learning_rate": 9e-06,
|
71 |
+
"loss": 1.6213,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.056657223796033995,
|
76 |
+
"grad_norm": 4.087852973173369,
|
77 |
+
"learning_rate": 1e-05,
|
78 |
+
"loss": 1.5217,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.06232294617563739,
|
83 |
+
"grad_norm": 4.071392878063137,
|
84 |
+
"learning_rate": 9.999948174819623e-06,
|
85 |
+
"loss": 1.6551,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.0679886685552408,
|
90 |
+
"grad_norm": 5.2075402015034,
|
91 |
+
"learning_rate": 9.999792700352826e-06,
|
92 |
+
"loss": 1.4474,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.07365439093484419,
|
97 |
+
"grad_norm": 3.6492933345906637,
|
98 |
+
"learning_rate": 9.999533579822611e-06,
|
99 |
+
"loss": 1.5585,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.07932011331444759,
|
104 |
+
"grad_norm": 6.482920810973195,
|
105 |
+
"learning_rate": 9.999170818600562e-06,
|
106 |
+
"loss": 1.3317,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.08498583569405099,
|
111 |
+
"grad_norm": 4.137365745831386,
|
112 |
+
"learning_rate": 9.998704424206747e-06,
|
113 |
+
"loss": 1.4029,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.0906515580736544,
|
118 |
+
"grad_norm": 4.745717244720069,
|
119 |
+
"learning_rate": 9.998134406309555e-06,
|
120 |
+
"loss": 1.6586,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.09631728045325778,
|
125 |
+
"grad_norm": 5.4377770096801346,
|
126 |
+
"learning_rate": 9.997460776725497e-06,
|
127 |
+
"loss": 1.365,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.10198300283286119,
|
132 |
+
"grad_norm": 3.317130182493388,
|
133 |
+
"learning_rate": 9.996683549418964e-06,
|
134 |
+
"loss": 1.4956,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.10764872521246459,
|
139 |
+
"grad_norm": 1.7845609616841893,
|
140 |
+
"learning_rate": 9.995802740501933e-06,
|
141 |
+
"loss": 1.3472,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.11331444759206799,
|
146 |
+
"grad_norm": 14.387033772755194,
|
147 |
+
"learning_rate": 9.994818368233639e-06,
|
148 |
+
"loss": 1.4116,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.11898016997167139,
|
153 |
+
"grad_norm": 6.920700020611593,
|
154 |
+
"learning_rate": 9.993730453020187e-06,
|
155 |
+
"loss": 1.2776,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.12464589235127478,
|
160 |
+
"grad_norm": 6.05951274644599,
|
161 |
+
"learning_rate": 9.99253901741414e-06,
|
162 |
+
"loss": 1.4433,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.13031161473087818,
|
167 |
+
"grad_norm": 3.0541449788715935,
|
168 |
+
"learning_rate": 9.991244086114046e-06,
|
169 |
+
"loss": 1.3396,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.1359773371104816,
|
174 |
+
"grad_norm": 1.8438099140328046,
|
175 |
+
"learning_rate": 9.989845685963917e-06,
|
176 |
+
"loss": 1.3061,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.141643059490085,
|
181 |
+
"grad_norm": 4.048301070320613,
|
182 |
+
"learning_rate": 9.988343845952697e-06,
|
183 |
+
"loss": 1.2283,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.14730878186968838,
|
188 |
+
"grad_norm": 3.5627296346591457,
|
189 |
+
"learning_rate": 9.986738597213633e-06,
|
190 |
+
"loss": 1.2865,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.1529745042492918,
|
195 |
+
"grad_norm": 2.237494567304501,
|
196 |
+
"learning_rate": 9.98502997302365e-06,
|
197 |
+
"loss": 1.3233,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.15864022662889518,
|
202 |
+
"grad_norm": 3.479719952104877,
|
203 |
+
"learning_rate": 9.983218008802648e-06,
|
204 |
+
"loss": 1.3033,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.1643059490084986,
|
209 |
+
"grad_norm": 2.066121083229141,
|
210 |
+
"learning_rate": 9.98130274211278e-06,
|
211 |
+
"loss": 1.3326,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.16997167138810199,
|
216 |
+
"grad_norm": 4.090684571263736,
|
217 |
+
"learning_rate": 9.979284212657658e-06,
|
218 |
+
"loss": 1.3102,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.17563739376770537,
|
223 |
+
"grad_norm": 2.369637256277251,
|
224 |
+
"learning_rate": 9.977162462281544e-06,
|
225 |
+
"loss": 1.4067,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.1813031161473088,
|
230 |
+
"grad_norm": 1.4378564529803546,
|
231 |
+
"learning_rate": 9.97493753496848e-06,
|
232 |
+
"loss": 1.2409,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.18696883852691218,
|
237 |
+
"grad_norm": 1.810353068849482,
|
238 |
+
"learning_rate": 9.972609476841368e-06,
|
239 |
+
"loss": 1.2659,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.19263456090651557,
|
244 |
+
"grad_norm": 2.954930884156565,
|
245 |
+
"learning_rate": 9.970178336161018e-06,
|
246 |
+
"loss": 1.3727,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.19830028328611898,
|
251 |
+
"grad_norm": 2.053307140265503,
|
252 |
+
"learning_rate": 9.967644163325157e-06,
|
253 |
+
"loss": 1.3463,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.20396600566572237,
|
258 |
+
"grad_norm": 1.8032124432327943,
|
259 |
+
"learning_rate": 9.965007010867366e-06,
|
260 |
+
"loss": 1.1998,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.2096317280453258,
|
265 |
+
"grad_norm": 1.4952983263862012,
|
266 |
+
"learning_rate": 9.962266933456008e-06,
|
267 |
+
"loss": 1.2829,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.21529745042492918,
|
272 |
+
"grad_norm": 1.3649794008291625,
|
273 |
+
"learning_rate": 9.959423987893086e-06,
|
274 |
+
"loss": 1.2056,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.22096317280453256,
|
279 |
+
"grad_norm": 1.4380773398306634,
|
280 |
+
"learning_rate": 9.956478233113066e-06,
|
281 |
+
"loss": 1.29,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.22662889518413598,
|
286 |
+
"grad_norm": 1.6072540934424309,
|
287 |
+
"learning_rate": 9.953429730181653e-06,
|
288 |
+
"loss": 1.2593,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.23229461756373937,
|
293 |
+
"grad_norm": 1.6010739399694889,
|
294 |
+
"learning_rate": 9.95027854229454e-06,
|
295 |
+
"loss": 1.2117,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.23796033994334279,
|
300 |
+
"grad_norm": 1.2474393925785745,
|
301 |
+
"learning_rate": 9.947024734776076e-06,
|
302 |
+
"loss": 1.2022,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.24362606232294617,
|
307 |
+
"grad_norm": 1.4019264249340568,
|
308 |
+
"learning_rate": 9.943668375077926e-06,
|
309 |
+
"loss": 1.2365,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.24929178470254956,
|
314 |
+
"grad_norm": 1.5087040675714003,
|
315 |
+
"learning_rate": 9.940209532777666e-06,
|
316 |
+
"loss": 1.274,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.254957507082153,
|
321 |
+
"grad_norm": 1.1953570915609946,
|
322 |
+
"learning_rate": 9.93664827957735e-06,
|
323 |
+
"loss": 1.2526,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.26062322946175637,
|
328 |
+
"grad_norm": 1.4826450819224886,
|
329 |
+
"learning_rate": 9.932984689302012e-06,
|
330 |
+
"loss": 1.1978,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.26628895184135976,
|
335 |
+
"grad_norm": 1.1937833972167977,
|
336 |
+
"learning_rate": 9.929218837898143e-06,
|
337 |
+
"loss": 1.1816,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.2719546742209632,
|
342 |
+
"grad_norm": 1.1238100782353855,
|
343 |
+
"learning_rate": 9.925350803432112e-06,
|
344 |
+
"loss": 1.1931,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.2776203966005666,
|
349 |
+
"grad_norm": 1.3338900623153498,
|
350 |
+
"learning_rate": 9.921380666088558e-06,
|
351 |
+
"loss": 1.1978,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.28328611898017,
|
356 |
+
"grad_norm": 1.3236848667289738,
|
357 |
+
"learning_rate": 9.917308508168712e-06,
|
358 |
+
"loss": 1.2551,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.28895184135977336,
|
363 |
+
"grad_norm": 1.425578635546673,
|
364 |
+
"learning_rate": 9.913134414088698e-06,
|
365 |
+
"loss": 1.2441,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.29461756373937675,
|
370 |
+
"grad_norm": 1.171581674684746,
|
371 |
+
"learning_rate": 9.908858470377793e-06,
|
372 |
+
"loss": 1.2369,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.3002832861189802,
|
377 |
+
"grad_norm": 1.1564744150302062,
|
378 |
+
"learning_rate": 9.904480765676617e-06,
|
379 |
+
"loss": 1.209,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.3059490084985836,
|
384 |
+
"grad_norm": 1.1357504524893798,
|
385 |
+
"learning_rate": 9.9000013907353e-06,
|
386 |
+
"loss": 1.2152,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.311614730878187,
|
391 |
+
"grad_norm": 1.0498825437855333,
|
392 |
+
"learning_rate": 9.895420438411616e-06,
|
393 |
+
"loss": 1.2043,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.31728045325779036,
|
398 |
+
"grad_norm": 1.6465219316145685,
|
399 |
+
"learning_rate": 9.890738003669029e-06,
|
400 |
+
"loss": 1.2289,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.32294617563739375,
|
405 |
+
"grad_norm": 1.711551232749367,
|
406 |
+
"learning_rate": 9.885954183574753e-06,
|
407 |
+
"loss": 1.1831,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.3286118980169972,
|
412 |
+
"grad_norm": 1.2636664413259953,
|
413 |
+
"learning_rate": 9.881069077297724e-06,
|
414 |
+
"loss": 1.2061,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.3342776203966006,
|
419 |
+
"grad_norm": 1.4260407982081962,
|
420 |
+
"learning_rate": 9.876082786106546e-06,
|
421 |
+
"loss": 1.1998,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.33994334277620397,
|
426 |
+
"grad_norm": 1.95604739866899,
|
427 |
+
"learning_rate": 9.870995413367397e-06,
|
428 |
+
"loss": 1.2215,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.34560906515580736,
|
433 |
+
"grad_norm": 1.2316545141521473,
|
434 |
+
"learning_rate": 9.865807064541878e-06,
|
435 |
+
"loss": 1.1599,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.35127478753541075,
|
440 |
+
"grad_norm": 1.1178440688886253,
|
441 |
+
"learning_rate": 9.860517847184837e-06,
|
442 |
+
"loss": 1.1907,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.35694050991501414,
|
447 |
+
"grad_norm": 1.305376049095191,
|
448 |
+
"learning_rate": 9.855127870942131e-06,
|
449 |
+
"loss": 1.1474,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.3626062322946176,
|
454 |
+
"grad_norm": 1.0495122657744762,
|
455 |
+
"learning_rate": 9.849637247548356e-06,
|
456 |
+
"loss": 1.2424,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.36827195467422097,
|
461 |
+
"grad_norm": 1.141538926125254,
|
462 |
+
"learning_rate": 9.844046090824533e-06,
|
463 |
+
"loss": 1.1689,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.37393767705382436,
|
468 |
+
"grad_norm": 1.26961257521241,
|
469 |
+
"learning_rate": 9.83835451667574e-06,
|
470 |
+
"loss": 1.2106,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.37960339943342775,
|
475 |
+
"grad_norm": 1.081533609255719,
|
476 |
+
"learning_rate": 9.832562643088724e-06,
|
477 |
+
"loss": 1.1834,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.38526912181303113,
|
482 |
+
"grad_norm": 1.443083776392187,
|
483 |
+
"learning_rate": 9.826670590129442e-06,
|
484 |
+
"loss": 1.1505,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.3909348441926346,
|
489 |
+
"grad_norm": 1.135777382976375,
|
490 |
+
"learning_rate": 9.820678479940573e-06,
|
491 |
+
"loss": 1.1489,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.39660056657223797,
|
496 |
+
"grad_norm": 1.8779005247112062,
|
497 |
+
"learning_rate": 9.814586436738998e-06,
|
498 |
+
"loss": 1.1643,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.40226628895184136,
|
503 |
+
"grad_norm": 1.7980060811236744,
|
504 |
+
"learning_rate": 9.808394586813209e-06,
|
505 |
+
"loss": 1.1594,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.40793201133144474,
|
510 |
+
"grad_norm": 2.572405910372765,
|
511 |
+
"learning_rate": 9.802103058520704e-06,
|
512 |
+
"loss": 1.1854,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.41359773371104813,
|
517 |
+
"grad_norm": 2.0253448122778606,
|
518 |
+
"learning_rate": 9.795711982285317e-06,
|
519 |
+
"loss": 1.1826,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.4192634560906516,
|
524 |
+
"grad_norm": 6.483254642683073,
|
525 |
+
"learning_rate": 9.78922149059452e-06,
|
526 |
+
"loss": 1.1646,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.42492917847025496,
|
531 |
+
"grad_norm": 1.2964281102887218,
|
532 |
+
"learning_rate": 9.782631717996675e-06,
|
533 |
+
"loss": 1.2379,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.43059490084985835,
|
538 |
+
"grad_norm": 1.9517402996335103,
|
539 |
+
"learning_rate": 9.775942801098241e-06,
|
540 |
+
"loss": 1.164,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.43626062322946174,
|
545 |
+
"grad_norm": 3.064531007561859,
|
546 |
+
"learning_rate": 9.76915487856095e-06,
|
547 |
+
"loss": 1.1418,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.44192634560906513,
|
552 |
+
"grad_norm": 1.5009905490397355,
|
553 |
+
"learning_rate": 9.762268091098926e-06,
|
554 |
+
"loss": 1.1653,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.4475920679886686,
|
559 |
+
"grad_norm": 1.104518219439204,
|
560 |
+
"learning_rate": 9.755282581475769e-06,
|
561 |
+
"loss": 1.2025,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.45325779036827196,
|
566 |
+
"grad_norm": 7.807500502849419,
|
567 |
+
"learning_rate": 9.748198494501598e-06,
|
568 |
+
"loss": 1.148,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.45892351274787535,
|
573 |
+
"grad_norm": 6.196503908242147,
|
574 |
+
"learning_rate": 9.741015977030046e-06,
|
575 |
+
"loss": 1.1819,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.46458923512747874,
|
580 |
+
"grad_norm": 2.2714978855142736,
|
581 |
+
"learning_rate": 9.733735177955219e-06,
|
582 |
+
"loss": 1.1907,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.4702549575070821,
|
587 |
+
"grad_norm": 1.834743890260826,
|
588 |
+
"learning_rate": 9.72635624820861e-06,
|
589 |
+
"loss": 1.1381,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.47592067988668557,
|
594 |
+
"grad_norm": 1.28470626171519,
|
595 |
+
"learning_rate": 9.71887934075596e-06,
|
596 |
+
"loss": 1.2079,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.48158640226628896,
|
601 |
+
"grad_norm": 6.197048819949928,
|
602 |
+
"learning_rate": 9.711304610594104e-06,
|
603 |
+
"loss": 1.1272,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.48725212464589235,
|
608 |
+
"grad_norm": 3.412508821399008,
|
609 |
+
"learning_rate": 9.703632214747742e-06,
|
610 |
+
"loss": 1.2382,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.49291784702549574,
|
615 |
+
"grad_norm": 1.57336480270559,
|
616 |
+
"learning_rate": 9.695862312266195e-06,
|
617 |
+
"loss": 1.157,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.4985835694050991,
|
622 |
+
"grad_norm": 7.383065472181884,
|
623 |
+
"learning_rate": 9.687995064220102e-06,
|
624 |
+
"loss": 1.1684,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.5042492917847026,
|
629 |
+
"grad_norm": 7.508526165016783,
|
630 |
+
"learning_rate": 9.680030633698083e-06,
|
631 |
+
"loss": 1.155,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.509915014164306,
|
636 |
+
"grad_norm": 9.25317664016253,
|
637 |
+
"learning_rate": 9.671969185803357e-06,
|
638 |
+
"loss": 1.1452,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.5155807365439093,
|
643 |
+
"grad_norm": 2.2525643431971876,
|
644 |
+
"learning_rate": 9.66381088765032e-06,
|
645 |
+
"loss": 1.1505,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.5212464589235127,
|
650 |
+
"grad_norm": 1.4721293586733248,
|
651 |
+
"learning_rate": 9.65555590836108e-06,
|
652 |
+
"loss": 1.1812,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.5269121813031161,
|
657 |
+
"grad_norm": 2.6949100034582103,
|
658 |
+
"learning_rate": 9.647204419061957e-06,
|
659 |
+
"loss": 1.1739,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.5325779036827195,
|
664 |
+
"grad_norm": 2.027029228479332,
|
665 |
+
"learning_rate": 9.638756592879923e-06,
|
666 |
+
"loss": 1.1335,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.5382436260623229,
|
671 |
+
"grad_norm": 1.8382974162119243,
|
672 |
+
"learning_rate": 9.630212604939026e-06,
|
673 |
+
"loss": 1.1298,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.5439093484419264,
|
678 |
+
"grad_norm": 1.2086577711922202,
|
679 |
+
"learning_rate": 9.621572632356754e-06,
|
680 |
+
"loss": 1.167,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.5495750708215298,
|
685 |
+
"grad_norm": 1.2819489966676616,
|
686 |
+
"learning_rate": 9.61283685424036e-06,
|
687 |
+
"loss": 1.1151,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.5552407932011332,
|
692 |
+
"grad_norm": 1.6800709750196126,
|
693 |
+
"learning_rate": 9.604005451683154e-06,
|
694 |
+
"loss": 1.1945,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.5609065155807366,
|
699 |
+
"grad_norm": 1.3375384173734144,
|
700 |
+
"learning_rate": 9.59507860776075e-06,
|
701 |
+
"loss": 1.1621,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.56657223796034,
|
706 |
+
"grad_norm": 2.188062868326175,
|
707 |
+
"learning_rate": 9.586056507527266e-06,
|
708 |
+
"loss": 1.1555,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.5722379603399433,
|
713 |
+
"grad_norm": 1.3814102048227788,
|
714 |
+
"learning_rate": 9.57693933801149e-06,
|
715 |
+
"loss": 1.1733,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.5779036827195467,
|
720 |
+
"grad_norm": 1.8014483071872645,
|
721 |
+
"learning_rate": 9.567727288213005e-06,
|
722 |
+
"loss": 1.1964,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.5835694050991501,
|
727 |
+
"grad_norm": 1.1912746031738484,
|
728 |
+
"learning_rate": 9.558420549098269e-06,
|
729 |
+
"loss": 1.2144,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.5892351274787535,
|
734 |
+
"grad_norm": 3.034007485521762,
|
735 |
+
"learning_rate": 9.549019313596652e-06,
|
736 |
+
"loss": 1.1321,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.5949008498583569,
|
741 |
+
"grad_norm": 1.866729945439932,
|
742 |
+
"learning_rate": 9.539523776596446e-06,
|
743 |
+
"loss": 1.1539,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.6005665722379604,
|
748 |
+
"grad_norm": 1.5773392319922173,
|
749 |
+
"learning_rate": 9.529934134940819e-06,
|
750 |
+
"loss": 1.1373,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.6062322946175638,
|
755 |
+
"grad_norm": 1.6561757646401918,
|
756 |
+
"learning_rate": 9.520250587423733e-06,
|
757 |
+
"loss": 1.1788,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.6118980169971672,
|
762 |
+
"grad_norm": 1.2809743948171723,
|
763 |
+
"learning_rate": 9.510473334785828e-06,
|
764 |
+
"loss": 1.1509,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.6175637393767706,
|
769 |
+
"grad_norm": 3.3019220495325405,
|
770 |
+
"learning_rate": 9.500602579710256e-06,
|
771 |
+
"loss": 1.1879,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.623229461756374,
|
776 |
+
"grad_norm": 1.5241985081276304,
|
777 |
+
"learning_rate": 9.490638526818482e-06,
|
778 |
+
"loss": 1.1114,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.6288951841359773,
|
783 |
+
"grad_norm": 2.053104975498995,
|
784 |
+
"learning_rate": 9.480581382666041e-06,
|
785 |
+
"loss": 1.2417,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.6345609065155807,
|
790 |
+
"grad_norm": 1.450461775862418,
|
791 |
+
"learning_rate": 9.470431355738257e-06,
|
792 |
+
"loss": 1.0761,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.6402266288951841,
|
797 |
+
"grad_norm": 2.831772615909268,
|
798 |
+
"learning_rate": 9.460188656445921e-06,
|
799 |
+
"loss": 1.1684,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.6458923512747875,
|
804 |
+
"grad_norm": 1.5478096558601282,
|
805 |
+
"learning_rate": 9.449853497120928e-06,
|
806 |
+
"loss": 1.1695,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.6515580736543909,
|
811 |
+
"grad_norm": 1.6582616402814803,
|
812 |
+
"learning_rate": 9.439426092011877e-06,
|
813 |
+
"loss": 1.1099,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.6572237960339944,
|
818 |
+
"grad_norm": 1.0617767973732541,
|
819 |
+
"learning_rate": 9.428906657279629e-06,
|
820 |
+
"loss": 1.1584,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.6628895184135978,
|
825 |
+
"grad_norm": 1.6822664727814025,
|
826 |
+
"learning_rate": 9.418295410992821e-06,
|
827 |
+
"loss": 1.1527,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.6685552407932012,
|
832 |
+
"grad_norm": 1.1837357577931802,
|
833 |
+
"learning_rate": 9.407592573123359e-06,
|
834 |
+
"loss": 1.187,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.6742209631728046,
|
839 |
+
"grad_norm": 1.690006148754325,
|
840 |
+
"learning_rate": 9.396798365541841e-06,
|
841 |
+
"loss": 1.1023,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.6798866855524079,
|
846 |
+
"grad_norm": 1.2755747770023382,
|
847 |
+
"learning_rate": 9.385913012012972e-06,
|
848 |
+
"loss": 1.1779,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.6855524079320113,
|
853 |
+
"grad_norm": 1.0625930962823409,
|
854 |
+
"learning_rate": 9.374936738190913e-06,
|
855 |
+
"loss": 1.1586,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.6912181303116147,
|
860 |
+
"grad_norm": 1.4107647400186194,
|
861 |
+
"learning_rate": 9.363869771614615e-06,
|
862 |
+
"loss": 1.1227,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.6968838526912181,
|
867 |
+
"grad_norm": 1.4237393729227041,
|
868 |
+
"learning_rate": 9.35271234170309e-06,
|
869 |
+
"loss": 1.1526,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.7025495750708215,
|
874 |
+
"grad_norm": 1.239081728465614,
|
875 |
+
"learning_rate": 9.341464679750669e-06,
|
876 |
+
"loss": 1.1676,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.7082152974504249,
|
881 |
+
"grad_norm": 1.2250609811941313,
|
882 |
+
"learning_rate": 9.330127018922195e-06,
|
883 |
+
"loss": 1.1549,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.7138810198300283,
|
888 |
+
"grad_norm": 1.0079463118549998,
|
889 |
+
"learning_rate": 9.318699594248192e-06,
|
890 |
+
"loss": 1.0825,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.7195467422096318,
|
895 |
+
"grad_norm": 1.1822482076914111,
|
896 |
+
"learning_rate": 9.307182642620001e-06,
|
897 |
+
"loss": 1.1699,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.7252124645892352,
|
902 |
+
"grad_norm": 1.192585782341377,
|
903 |
+
"learning_rate": 9.295576402784858e-06,
|
904 |
+
"loss": 1.1864,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.7308781869688386,
|
909 |
+
"grad_norm": 1.1793876225801334,
|
910 |
+
"learning_rate": 9.283881115340957e-06,
|
911 |
+
"loss": 1.1592,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.7365439093484419,
|
916 |
+
"grad_norm": 1.4328581990598621,
|
917 |
+
"learning_rate": 9.272097022732444e-06,
|
918 |
+
"loss": 1.1264,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.7422096317280453,
|
923 |
+
"grad_norm": 1.4063460821599099,
|
924 |
+
"learning_rate": 9.260224369244414e-06,
|
925 |
+
"loss": 1.1582,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.7478753541076487,
|
930 |
+
"grad_norm": 1.3928551806399836,
|
931 |
+
"learning_rate": 9.248263400997826e-06,
|
932 |
+
"loss": 1.1036,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.7535410764872521,
|
937 |
+
"grad_norm": 1.0443812793505807,
|
938 |
+
"learning_rate": 9.236214365944418e-06,
|
939 |
+
"loss": 1.1809,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.7592067988668555,
|
944 |
+
"grad_norm": 7.4865021772015234,
|
945 |
+
"learning_rate": 9.224077513861556e-06,
|
946 |
+
"loss": 1.1432,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.7648725212464589,
|
951 |
+
"grad_norm": 4.687727924279942,
|
952 |
+
"learning_rate": 9.211853096347059e-06,
|
953 |
+
"loss": 1.1436,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.7705382436260623,
|
958 |
+
"grad_norm": 1.7813513129483227,
|
959 |
+
"learning_rate": 9.199541366813984e-06,
|
960 |
+
"loss": 1.2003,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.7762039660056658,
|
965 |
+
"grad_norm": 1.1574866856711652,
|
966 |
+
"learning_rate": 9.18714258048537e-06,
|
967 |
+
"loss": 1.0949,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.7818696883852692,
|
972 |
+
"grad_norm": 1.5923532949818175,
|
973 |
+
"learning_rate": 9.174656994388957e-06,
|
974 |
+
"loss": 1.1312,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.7875354107648725,
|
979 |
+
"grad_norm": 1.4090405021331738,
|
980 |
+
"learning_rate": 9.16208486735184e-06,
|
981 |
+
"loss": 1.1371,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.7932011331444759,
|
986 |
+
"grad_norm": 1.1066958591085674,
|
987 |
+
"learning_rate": 9.149426459995127e-06,
|
988 |
+
"loss": 1.1892,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.7988668555240793,
|
993 |
+
"grad_norm": 1.3806489023187403,
|
994 |
+
"learning_rate": 9.136682034728508e-06,
|
995 |
+
"loss": 1.1203,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.8045325779036827,
|
1000 |
+
"grad_norm": 1.4492241915768966,
|
1001 |
+
"learning_rate": 9.123851855744842e-06,
|
1002 |
+
"loss": 1.1606,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.8101983002832861,
|
1007 |
+
"grad_norm": 1.2880006738591805,
|
1008 |
+
"learning_rate": 9.110936189014668e-06,
|
1009 |
+
"loss": 1.1363,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.8158640226628895,
|
1014 |
+
"grad_norm": 1.4252322295071467,
|
1015 |
+
"learning_rate": 9.097935302280682e-06,
|
1016 |
+
"loss": 1.1299,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.8215297450424929,
|
1021 |
+
"grad_norm": 1.1051239821774794,
|
1022 |
+
"learning_rate": 9.08484946505221e-06,
|
1023 |
+
"loss": 1.1855,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.8271954674220963,
|
1028 |
+
"grad_norm": 1.1582328438262173,
|
1029 |
+
"learning_rate": 9.0716789485996e-06,
|
1030 |
+
"loss": 1.1173,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.8328611898016998,
|
1035 |
+
"grad_norm": 1.1514645858243073,
|
1036 |
+
"learning_rate": 9.058424025948609e-06,
|
1037 |
+
"loss": 1.0758,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.8385269121813032,
|
1042 |
+
"grad_norm": 1.9099023373890425,
|
1043 |
+
"learning_rate": 9.045084971874738e-06,
|
1044 |
+
"loss": 1.1502,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.8441926345609065,
|
1049 |
+
"grad_norm": 1.4883203974156398,
|
1050 |
+
"learning_rate": 9.03166206289754e-06,
|
1051 |
+
"loss": 1.1244,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.8498583569405099,
|
1056 |
+
"grad_norm": 1.2439793782301596,
|
1057 |
+
"learning_rate": 9.018155577274891e-06,
|
1058 |
+
"loss": 1.1188,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.8555240793201133,
|
1063 |
+
"grad_norm": 0.9842320904106822,
|
1064 |
+
"learning_rate": 9.004565794997209e-06,
|
1065 |
+
"loss": 1.0915,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.8611898016997167,
|
1070 |
+
"grad_norm": 1.1256206443075392,
|
1071 |
+
"learning_rate": 8.990892997781661e-06,
|
1072 |
+
"loss": 1.1418,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.8668555240793201,
|
1077 |
+
"grad_norm": 1.4668868690697237,
|
1078 |
+
"learning_rate": 8.977137469066321e-06,
|
1079 |
+
"loss": 1.1439,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.8725212464589235,
|
1084 |
+
"grad_norm": 1.0357963651071045,
|
1085 |
+
"learning_rate": 8.963299494004292e-06,
|
1086 |
+
"loss": 1.1489,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.8781869688385269,
|
1091 |
+
"grad_norm": 1.2279259538562963,
|
1092 |
+
"learning_rate": 8.949379359457795e-06,
|
1093 |
+
"loss": 1.148,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.8838526912181303,
|
1098 |
+
"grad_norm": 1.279164021341607,
|
1099 |
+
"learning_rate": 8.935377353992222e-06,
|
1100 |
+
"loss": 1.1291,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.8895184135977338,
|
1105 |
+
"grad_norm": 1.0117872914387078,
|
1106 |
+
"learning_rate": 8.921293767870157e-06,
|
1107 |
+
"loss": 1.1029,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.8951841359773371,
|
1112 |
+
"grad_norm": 1.0385739682984056,
|
1113 |
+
"learning_rate": 8.907128893045359e-06,
|
1114 |
+
"loss": 1.1378,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.9008498583569405,
|
1119 |
+
"grad_norm": 0.9862798736503189,
|
1120 |
+
"learning_rate": 8.892883023156703e-06,
|
1121 |
+
"loss": 1.1247,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.9065155807365439,
|
1126 |
+
"grad_norm": 1.0052226052209343,
|
1127 |
+
"learning_rate": 8.8785564535221e-06,
|
1128 |
+
"loss": 1.1396,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.9121813031161473,
|
1133 |
+
"grad_norm": 1.0025191403649947,
|
1134 |
+
"learning_rate": 8.86414948113237e-06,
|
1135 |
+
"loss": 1.1072,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.9178470254957507,
|
1140 |
+
"grad_norm": 1.0190829556170014,
|
1141 |
+
"learning_rate": 8.849662404645097e-06,
|
1142 |
+
"loss": 1.0692,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.9235127478753541,
|
1147 |
+
"grad_norm": 1.065083676666634,
|
1148 |
+
"learning_rate": 8.835095524378413e-06,
|
1149 |
+
"loss": 1.0839,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.9291784702549575,
|
1154 |
+
"grad_norm": 2.75250829153078,
|
1155 |
+
"learning_rate": 8.820449142304805e-06,
|
1156 |
+
"loss": 1.0976,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.9348441926345609,
|
1161 |
+
"grad_norm": 1.11457337735503,
|
1162 |
+
"learning_rate": 8.805723562044825e-06,
|
1163 |
+
"loss": 1.1383,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.9405099150141643,
|
1168 |
+
"grad_norm": 1.223823647150824,
|
1169 |
+
"learning_rate": 8.790919088860815e-06,
|
1170 |
+
"loss": 1.1331,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.9461756373937678,
|
1175 |
+
"grad_norm": 0.9688685956053592,
|
1176 |
+
"learning_rate": 8.776036029650573e-06,
|
1177 |
+
"loss": 1.1168,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.9518413597733711,
|
1182 |
+
"grad_norm": 1.0407006447195224,
|
1183 |
+
"learning_rate": 8.76107469294099e-06,
|
1184 |
+
"loss": 1.1353,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.9575070821529745,
|
1189 |
+
"grad_norm": 1.477166466547593,
|
1190 |
+
"learning_rate": 8.746035388881655e-06,
|
1191 |
+
"loss": 1.146,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.9631728045325779,
|
1196 |
+
"grad_norm": 1.1923873158431406,
|
1197 |
+
"learning_rate": 8.730918429238429e-06,
|
1198 |
+
"loss": 1.1513,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.9688385269121813,
|
1203 |
+
"grad_norm": 1.2104600261128056,
|
1204 |
+
"learning_rate": 8.715724127386971e-06,
|
1205 |
+
"loss": 1.0846,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.9745042492917847,
|
1210 |
+
"grad_norm": 1.026649259168152,
|
1211 |
+
"learning_rate": 8.70045279830626e-06,
|
1212 |
+
"loss": 1.0987,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.9801699716713881,
|
1217 |
+
"grad_norm": 1.1324270741577538,
|
1218 |
+
"learning_rate": 8.685104758572047e-06,
|
1219 |
+
"loss": 1.1884,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.9858356940509915,
|
1224 |
+
"grad_norm": 1.1264630127825281,
|
1225 |
+
"learning_rate": 8.669680326350303e-06,
|
1226 |
+
"loss": 1.1505,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.9915014164305949,
|
1231 |
+
"grad_norm": 1.0463584307162723,
|
1232 |
+
"learning_rate": 8.65417982139062e-06,
|
1233 |
+
"loss": 1.1194,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.9971671388101983,
|
1238 |
+
"grad_norm": 1.1195551791308074,
|
1239 |
+
"learning_rate": 8.638603565019588e-06,
|
1240 |
+
"loss": 1.1228,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.0113636363636365,
|
1245 |
+
"grad_norm": 1.7869848977800533,
|
1246 |
+
"learning_rate": 8.622951880134122e-06,
|
1247 |
+
"loss": 1.0017,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.0170454545454546,
|
1252 |
+
"grad_norm": 1.8967548711721598,
|
1253 |
+
"learning_rate": 8.60722509119478e-06,
|
1254 |
+
"loss": 1.0646,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.0227272727272727,
|
1259 |
+
"grad_norm": 2.7719840532515856,
|
1260 |
+
"learning_rate": 8.59142352421903e-06,
|
1261 |
+
"loss": 0.9887,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.0284090909090908,
|
1266 |
+
"grad_norm": 1.8480101734746917,
|
1267 |
+
"learning_rate": 8.575547506774498e-06,
|
1268 |
+
"loss": 1.0262,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.0340909090909092,
|
1273 |
+
"grad_norm": 1.4999444026158775,
|
1274 |
+
"learning_rate": 8.559597367972168e-06,
|
1275 |
+
"loss": 0.9829,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.0397727272727273,
|
1280 |
+
"grad_norm": 1.38809085421665,
|
1281 |
+
"learning_rate": 8.543573438459573e-06,
|
1282 |
+
"loss": 1.0144,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.0454545454545454,
|
1287 |
+
"grad_norm": 1.2624399470463477,
|
1288 |
+
"learning_rate": 8.527476050413922e-06,
|
1289 |
+
"loss": 0.9867,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.0511363636363635,
|
1294 |
+
"grad_norm": 7.342610894443344,
|
1295 |
+
"learning_rate": 8.511305537535238e-06,
|
1296 |
+
"loss": 0.9866,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.0568181818181819,
|
1301 |
+
"grad_norm": 8.705248219538825,
|
1302 |
+
"learning_rate": 8.49506223503941e-06,
|
1303 |
+
"loss": 0.9728,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.0625,
|
1308 |
+
"grad_norm": 2.0263962989089936,
|
1309 |
+
"learning_rate": 8.47874647965128e-06,
|
1310 |
+
"loss": 0.9965,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.0681818181818181,
|
1315 |
+
"grad_norm": 2.13351438929688,
|
1316 |
+
"learning_rate": 8.462358609597629e-06,
|
1317 |
+
"loss": 1.0024,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.0738636363636365,
|
1322 |
+
"grad_norm": 2.0005753741817736,
|
1323 |
+
"learning_rate": 8.445898964600188e-06,
|
1324 |
+
"loss": 0.993,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.0795454545454546,
|
1329 |
+
"grad_norm": 2.084050032615475,
|
1330 |
+
"learning_rate": 8.429367885868582e-06,
|
1331 |
+
"loss": 0.9958,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.0852272727272727,
|
1336 |
+
"grad_norm": 1.7516330808766072,
|
1337 |
+
"learning_rate": 8.412765716093273e-06,
|
1338 |
+
"loss": 1.0554,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.0909090909090908,
|
1343 |
+
"grad_norm": 1.2861019981619892,
|
1344 |
+
"learning_rate": 8.396092799438429e-06,
|
1345 |
+
"loss": 1.013,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.0965909090909092,
|
1350 |
+
"grad_norm": 1.4381225932886976,
|
1351 |
+
"learning_rate": 8.379349481534822e-06,
|
1352 |
+
"loss": 0.9797,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.1022727272727273,
|
1357 |
+
"grad_norm": 1.8623594079891328,
|
1358 |
+
"learning_rate": 8.362536109472637e-06,
|
1359 |
+
"loss": 1.0018,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.1079545454545454,
|
1364 |
+
"grad_norm": 1.5115381108478676,
|
1365 |
+
"learning_rate": 8.345653031794292e-06,
|
1366 |
+
"loss": 1.016,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.1136363636363635,
|
1371 |
+
"grad_norm": 1.193026650866575,
|
1372 |
+
"learning_rate": 8.328700598487203e-06,
|
1373 |
+
"loss": 0.9977,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.1193181818181819,
|
1378 |
+
"grad_norm": 1.080840404605079,
|
1379 |
+
"learning_rate": 8.31167916097654e-06,
|
1380 |
+
"loss": 0.9982,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.125,
|
1385 |
+
"grad_norm": 1.244418182887263,
|
1386 |
+
"learning_rate": 8.294589072117925e-06,
|
1387 |
+
"loss": 1.0206,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.1306818181818181,
|
1392 |
+
"grad_norm": 1.054116651622593,
|
1393 |
+
"learning_rate": 8.277430686190137e-06,
|
1394 |
+
"loss": 0.9932,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.1363636363636362,
|
1399 |
+
"grad_norm": 1.6708346020909142,
|
1400 |
+
"learning_rate": 8.260204358887753e-06,
|
1401 |
+
"loss": 0.9867,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.1420454545454546,
|
1406 |
+
"grad_norm": 1.764380671950815,
|
1407 |
+
"learning_rate": 8.24291044731378e-06,
|
1408 |
+
"loss": 1.0255,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.1477272727272727,
|
1413 |
+
"grad_norm": 1.4610852940462264,
|
1414 |
+
"learning_rate": 8.225549309972256e-06,
|
1415 |
+
"loss": 1.0016,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.1534090909090908,
|
1420 |
+
"grad_norm": 1.3465974910520928,
|
1421 |
+
"learning_rate": 8.208121306760806e-06,
|
1422 |
+
"loss": 0.9942,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.1590909090909092,
|
1427 |
+
"grad_norm": 3.407109598217383,
|
1428 |
+
"learning_rate": 8.190626798963198e-06,
|
1429 |
+
"loss": 0.9595,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.1647727272727273,
|
1434 |
+
"grad_norm": 3.4569449045424228,
|
1435 |
+
"learning_rate": 8.173066149241839e-06,
|
1436 |
+
"loss": 0.9679,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.1704545454545454,
|
1441 |
+
"grad_norm": 3.5722389574790623,
|
1442 |
+
"learning_rate": 8.155439721630265e-06,
|
1443 |
+
"loss": 1.0112,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.1761363636363638,
|
1448 |
+
"grad_norm": 1.7368368324960894,
|
1449 |
+
"learning_rate": 8.137747881525593e-06,
|
1450 |
+
"loss": 0.9658,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.1818181818181819,
|
1455 |
+
"grad_norm": 3.5425491105943365,
|
1456 |
+
"learning_rate": 8.119990995680942e-06,
|
1457 |
+
"loss": 1.0097,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.1875,
|
1462 |
+
"grad_norm": 4.277519958399436,
|
1463 |
+
"learning_rate": 8.102169432197842e-06,
|
1464 |
+
"loss": 1.0525,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.1931818181818181,
|
1469 |
+
"grad_norm": 1.5253776819790414,
|
1470 |
+
"learning_rate": 8.084283560518584e-06,
|
1471 |
+
"loss": 1.0257,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.1988636363636362,
|
1476 |
+
"grad_norm": 2.393941181872517,
|
1477 |
+
"learning_rate": 8.066333751418582e-06,
|
1478 |
+
"loss": 0.9519,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.2045454545454546,
|
1483 |
+
"grad_norm": 1.8648154402777406,
|
1484 |
+
"learning_rate": 8.048320376998675e-06,
|
1485 |
+
"loss": 1.0314,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.2102272727272727,
|
1490 |
+
"grad_norm": 1.1560926115738988,
|
1491 |
+
"learning_rate": 8.030243810677408e-06,
|
1492 |
+
"loss": 1.0079,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.2159090909090908,
|
1497 |
+
"grad_norm": 1.9861708806007312,
|
1498 |
+
"learning_rate": 8.012104427183313e-06,
|
1499 |
+
"loss": 0.9712,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.2215909090909092,
|
1504 |
+
"grad_norm": 1.6176603802315128,
|
1505 |
+
"learning_rate": 7.993902602547113e-06,
|
1506 |
+
"loss": 1.0604,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.2272727272727273,
|
1511 |
+
"grad_norm": 1.206136483858858,
|
1512 |
+
"learning_rate": 7.97563871409395e-06,
|
1513 |
+
"loss": 0.9968,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.2329545454545454,
|
1518 |
+
"grad_norm": 1.0849650106469113,
|
1519 |
+
"learning_rate": 7.957313140435545e-06,
|
1520 |
+
"loss": 1.0013,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.2386363636363638,
|
1525 |
+
"grad_norm": 1.2530592258144626,
|
1526 |
+
"learning_rate": 7.938926261462366e-06,
|
1527 |
+
"loss": 1.0392,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.2443181818181819,
|
1532 |
+
"grad_norm": 1.4528013728950318,
|
1533 |
+
"learning_rate": 7.920478458335738e-06,
|
1534 |
+
"loss": 0.945,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.25,
|
1539 |
+
"grad_norm": 1.1182010469150763,
|
1540 |
+
"learning_rate": 7.901970113479956e-06,
|
1541 |
+
"loss": 0.9755,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.2556818181818181,
|
1546 |
+
"grad_norm": 1.274158214216111,
|
1547 |
+
"learning_rate": 7.883401610574338e-06,
|
1548 |
+
"loss": 0.9827,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.2613636363636362,
|
1553 |
+
"grad_norm": 1.4460645426911298,
|
1554 |
+
"learning_rate": 7.86477333454529e-06,
|
1555 |
+
"loss": 1.0233,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.2670454545454546,
|
1560 |
+
"grad_norm": 1.004043430975716,
|
1561 |
+
"learning_rate": 7.84608567155832e-06,
|
1562 |
+
"loss": 0.988,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.2727272727272727,
|
1567 |
+
"grad_norm": 1.1277928768546195,
|
1568 |
+
"learning_rate": 7.82733900901003e-06,
|
1569 |
+
"loss": 1.0092,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.2784090909090908,
|
1574 |
+
"grad_norm": 1.30174465678015,
|
1575 |
+
"learning_rate": 7.808533735520087e-06,
|
1576 |
+
"loss": 1.0023,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.2840909090909092,
|
1581 |
+
"grad_norm": 1.155122280361969,
|
1582 |
+
"learning_rate": 7.789670240923169e-06,
|
1583 |
+
"loss": 0.9938,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.2897727272727273,
|
1588 |
+
"grad_norm": 1.1535920929699675,
|
1589 |
+
"learning_rate": 7.770748916260875e-06,
|
1590 |
+
"loss": 1.0215,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.2954545454545454,
|
1595 |
+
"grad_norm": 1.7495637702269113,
|
1596 |
+
"learning_rate": 7.751770153773635e-06,
|
1597 |
+
"loss": 0.9776,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.3011363636363638,
|
1602 |
+
"grad_norm": 1.2776922576240242,
|
1603 |
+
"learning_rate": 7.732734346892561e-06,
|
1604 |
+
"loss": 0.9716,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.3068181818181819,
|
1609 |
+
"grad_norm": 1.3172404492877499,
|
1610 |
+
"learning_rate": 7.71364189023131e-06,
|
1611 |
+
"loss": 0.9928,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.3125,
|
1616 |
+
"grad_norm": 1.0320305867343866,
|
1617 |
+
"learning_rate": 7.69449317957788e-06,
|
1618 |
+
"loss": 0.9544,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.3181818181818181,
|
1623 |
+
"grad_norm": 0.9917633137560159,
|
1624 |
+
"learning_rate": 7.675288611886423e-06,
|
1625 |
+
"loss": 0.9762,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.3238636363636362,
|
1630 |
+
"grad_norm": 0.8750459875550817,
|
1631 |
+
"learning_rate": 7.656028585269017e-06,
|
1632 |
+
"loss": 0.9649,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.3295454545454546,
|
1637 |
+
"grad_norm": 1.0172245413205394,
|
1638 |
+
"learning_rate": 7.636713498987405e-06,
|
1639 |
+
"loss": 0.9915,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.3352272727272727,
|
1644 |
+
"grad_norm": 1.1026610095660114,
|
1645 |
+
"learning_rate": 7.617343753444714e-06,
|
1646 |
+
"loss": 0.9167,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.3409090909090908,
|
1651 |
+
"grad_norm": 0.9838674494365538,
|
1652 |
+
"learning_rate": 7.597919750177168e-06,
|
1653 |
+
"loss": 0.9978,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 1.3465909090909092,
|
1658 |
+
"grad_norm": 0.9922575875228704,
|
1659 |
+
"learning_rate": 7.5784418918457605e-06,
|
1660 |
+
"loss": 1.0052,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 1.3522727272727273,
|
1665 |
+
"grad_norm": 0.9776223871792626,
|
1666 |
+
"learning_rate": 7.5589105822278944e-06,
|
1667 |
+
"loss": 1.0096,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 1.3579545454545454,
|
1672 |
+
"grad_norm": 1.4258305295766374,
|
1673 |
+
"learning_rate": 7.539326226209032e-06,
|
1674 |
+
"loss": 1.0458,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 1.3636363636363638,
|
1679 |
+
"grad_norm": 1.0015058561164187,
|
1680 |
+
"learning_rate": 7.519689229774282e-06,
|
1681 |
+
"loss": 1.0248,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.3693181818181819,
|
1686 |
+
"grad_norm": 1.0082049852889665,
|
1687 |
+
"learning_rate": 7.500000000000001e-06,
|
1688 |
+
"loss": 0.9766,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.375,
|
1693 |
+
"grad_norm": 0.904307095617801,
|
1694 |
+
"learning_rate": 7.4802589450453415e-06,
|
1695 |
+
"loss": 1.029,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 1.3806818181818181,
|
1700 |
+
"grad_norm": 0.9709949750288794,
|
1701 |
+
"learning_rate": 7.4604664741437975e-06,
|
1702 |
+
"loss": 0.9803,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.3863636363636362,
|
1707 |
+
"grad_norm": 0.9137049440782995,
|
1708 |
+
"learning_rate": 7.440622997594718e-06,
|
1709 |
+
"loss": 0.9838,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 1.3920454545454546,
|
1714 |
+
"grad_norm": 0.955522616879317,
|
1715 |
+
"learning_rate": 7.420728926754803e-06,
|
1716 |
+
"loss": 0.9841,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 1.3977272727272727,
|
1721 |
+
"grad_norm": 0.8924545271105511,
|
1722 |
+
"learning_rate": 7.400784674029579e-06,
|
1723 |
+
"loss": 0.9747,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.4034090909090908,
|
1728 |
+
"grad_norm": 0.9275527221675671,
|
1729 |
+
"learning_rate": 7.380790652864842e-06,
|
1730 |
+
"loss": 1.0203,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.4090909090909092,
|
1735 |
+
"grad_norm": 0.9480980891308645,
|
1736 |
+
"learning_rate": 7.360747277738094e-06,
|
1737 |
+
"loss": 0.9923,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.4147727272727273,
|
1742 |
+
"grad_norm": 0.8427849664059336,
|
1743 |
+
"learning_rate": 7.340654964149947e-06,
|
1744 |
+
"loss": 0.9806,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.4204545454545454,
|
1749 |
+
"grad_norm": 0.9076953250803492,
|
1750 |
+
"learning_rate": 7.320514128615511e-06,
|
1751 |
+
"loss": 0.9982,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 1.4261363636363638,
|
1756 |
+
"grad_norm": 1.0540250139165377,
|
1757 |
+
"learning_rate": 7.300325188655762e-06,
|
1758 |
+
"loss": 0.9902,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 1.4318181818181819,
|
1763 |
+
"grad_norm": 0.9954503040475974,
|
1764 |
+
"learning_rate": 7.280088562788879e-06,
|
1765 |
+
"loss": 0.9809,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 1.4375,
|
1770 |
+
"grad_norm": 0.9967393104089797,
|
1771 |
+
"learning_rate": 7.259804670521579e-06,
|
1772 |
+
"loss": 1.0,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.4431818181818181,
|
1777 |
+
"grad_norm": 0.9891797210154472,
|
1778 |
+
"learning_rate": 7.2394739323404105e-06,
|
1779 |
+
"loss": 1.0005,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 1.4488636363636362,
|
1784 |
+
"grad_norm": 1.1178308003268749,
|
1785 |
+
"learning_rate": 7.219096769703045e-06,
|
1786 |
+
"loss": 0.9868,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 1.4545454545454546,
|
1791 |
+
"grad_norm": 1.0000809761609377,
|
1792 |
+
"learning_rate": 7.198673605029529e-06,
|
1793 |
+
"loss": 0.9648,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 1.4602272727272727,
|
1798 |
+
"grad_norm": 0.9396228245111997,
|
1799 |
+
"learning_rate": 7.178204861693546e-06,
|
1800 |
+
"loss": 1.0009,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 1.4659090909090908,
|
1805 |
+
"grad_norm": 1.055214770002229,
|
1806 |
+
"learning_rate": 7.15769096401362e-06,
|
1807 |
+
"loss": 0.9478,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 1.4715909090909092,
|
1812 |
+
"grad_norm": 1.0750160280057304,
|
1813 |
+
"learning_rate": 7.137132337244329e-06,
|
1814 |
+
"loss": 0.958,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.4772727272727273,
|
1819 |
+
"grad_norm": 1.0648150711699151,
|
1820 |
+
"learning_rate": 7.116529407567489e-06,
|
1821 |
+
"loss": 0.9828,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 1.4829545454545454,
|
1826 |
+
"grad_norm": 1.1192077304577122,
|
1827 |
+
"learning_rate": 7.095882602083321e-06,
|
1828 |
+
"loss": 0.9707,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 1.4886363636363638,
|
1833 |
+
"grad_norm": 1.1092309283046025,
|
1834 |
+
"learning_rate": 7.075192348801591e-06,
|
1835 |
+
"loss": 0.9842,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 1.4943181818181819,
|
1840 |
+
"grad_norm": 1.0585087928308756,
|
1841 |
+
"learning_rate": 7.054459076632742e-06,
|
1842 |
+
"loss": 1.0636,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 1.5,
|
1847 |
+
"grad_norm": 1.041991357364786,
|
1848 |
+
"learning_rate": 7.033683215379002e-06,
|
1849 |
+
"loss": 0.9753,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 1.5056818181818183,
|
1854 |
+
"grad_norm": 0.9720414152268064,
|
1855 |
+
"learning_rate": 7.012865195725473e-06,
|
1856 |
+
"loss": 0.9916,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.5113636363636362,
|
1861 |
+
"grad_norm": 1.1265716150738212,
|
1862 |
+
"learning_rate": 6.9920054492312086e-06,
|
1863 |
+
"loss": 1.0678,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 1.5170454545454546,
|
1868 |
+
"grad_norm": 1.0711823881169122,
|
1869 |
+
"learning_rate": 6.971104408320253e-06,
|
1870 |
+
"loss": 0.9776,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 1.5227272727272727,
|
1875 |
+
"grad_norm": 1.1256078273217827,
|
1876 |
+
"learning_rate": 6.950162506272697e-06,
|
1877 |
+
"loss": 0.9904,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 1.5284090909090908,
|
1882 |
+
"grad_norm": 0.9811471547098307,
|
1883 |
+
"learning_rate": 6.9291801772156775e-06,
|
1884 |
+
"loss": 0.987,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 1.5340909090909092,
|
1889 |
+
"grad_norm": 1.205853115403329,
|
1890 |
+
"learning_rate": 6.9081578561143924e-06,
|
1891 |
+
"loss": 0.9352,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.5397727272727273,
|
1896 |
+
"grad_norm": 0.9564252171879485,
|
1897 |
+
"learning_rate": 6.887095978763072e-06,
|
1898 |
+
"loss": 1.0099,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.5454545454545454,
|
1903 |
+
"grad_norm": 0.9739638011221726,
|
1904 |
+
"learning_rate": 6.865994981775958e-06,
|
1905 |
+
"loss": 0.9186,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 1.5511363636363638,
|
1910 |
+
"grad_norm": 1.3776679228140132,
|
1911 |
+
"learning_rate": 6.844855302578236e-06,
|
1912 |
+
"loss": 1.0077,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 1.5568181818181817,
|
1917 |
+
"grad_norm": 1.0125445825014543,
|
1918 |
+
"learning_rate": 6.823677379396984e-06,
|
1919 |
+
"loss": 0.9993,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 1.5625,
|
1924 |
+
"grad_norm": 0.9892499359106408,
|
1925 |
+
"learning_rate": 6.802461651252073e-06,
|
1926 |
+
"loss": 0.9571,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 1.5681818181818183,
|
1931 |
+
"grad_norm": 1.0831674501266864,
|
1932 |
+
"learning_rate": 6.781208557947085e-06,
|
1933 |
+
"loss": 1.0061,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 1.5738636363636362,
|
1938 |
+
"grad_norm": 0.9356751500366064,
|
1939 |
+
"learning_rate": 6.759918540060173e-06,
|
1940 |
+
"loss": 0.979,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.5795454545454546,
|
1945 |
+
"grad_norm": 1.0557115003350075,
|
1946 |
+
"learning_rate": 6.738592038934946e-06,
|
1947 |
+
"loss": 0.9961,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 1.5852272727272727,
|
1952 |
+
"grad_norm": 1.2599637679261655,
|
1953 |
+
"learning_rate": 6.717229496671307e-06,
|
1954 |
+
"loss": 0.9753,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 1.5909090909090908,
|
1959 |
+
"grad_norm": 1.0507134323091725,
|
1960 |
+
"learning_rate": 6.6958313561163046e-06,
|
1961 |
+
"loss": 0.9425,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 1.5965909090909092,
|
1966 |
+
"grad_norm": 0.9631905231298211,
|
1967 |
+
"learning_rate": 6.674398060854931e-06,
|
1968 |
+
"loss": 1.055,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 1.6022727272727273,
|
1973 |
+
"grad_norm": 0.9131560827453628,
|
1974 |
+
"learning_rate": 6.652930055200948e-06,
|
1975 |
+
"loss": 0.9929,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 1.6079545454545454,
|
1980 |
+
"grad_norm": 0.9138134537225251,
|
1981 |
+
"learning_rate": 6.631427784187658e-06,
|
1982 |
+
"loss": 0.952,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.6136363636363638,
|
1987 |
+
"grad_norm": 0.9436608998471452,
|
1988 |
+
"learning_rate": 6.609891693558692e-06,
|
1989 |
+
"loss": 1.0371,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 1.6193181818181817,
|
1994 |
+
"grad_norm": 1.077730549555469,
|
1995 |
+
"learning_rate": 6.588322229758764e-06,
|
1996 |
+
"loss": 1.0231,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 1.625,
|
2001 |
+
"grad_norm": 0.8542525239275349,
|
2002 |
+
"learning_rate": 6.566719839924412e-06,
|
2003 |
+
"loss": 0.9908,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 1.6306818181818183,
|
2008 |
+
"grad_norm": 0.9390889918397101,
|
2009 |
+
"learning_rate": 6.545084971874738e-06,
|
2010 |
+
"loss": 0.9965,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 1.6363636363636362,
|
2015 |
+
"grad_norm": 1.3403721698995363,
|
2016 |
+
"learning_rate": 6.523418074102117e-06,
|
2017 |
+
"loss": 0.9865,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 1.6420454545454546,
|
2022 |
+
"grad_norm": 0.9787534693003979,
|
2023 |
+
"learning_rate": 6.501719595762903e-06,
|
2024 |
+
"loss": 0.995,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.6477272727272727,
|
2029 |
+
"grad_norm": 0.8866152592349634,
|
2030 |
+
"learning_rate": 6.479989986668118e-06,
|
2031 |
+
"loss": 0.9846,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 1.6534090909090908,
|
2036 |
+
"grad_norm": 0.8915138418235523,
|
2037 |
+
"learning_rate": 6.458229697274125e-06,
|
2038 |
+
"loss": 1.0373,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 1.6590909090909092,
|
2043 |
+
"grad_norm": 0.9633872591030624,
|
2044 |
+
"learning_rate": 6.436439178673296e-06,
|
2045 |
+
"loss": 0.9864,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 1.6647727272727273,
|
2050 |
+
"grad_norm": 0.9836814915125117,
|
2051 |
+
"learning_rate": 6.41461888258465e-06,
|
2052 |
+
"loss": 0.9555,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 1.6704545454545454,
|
2057 |
+
"grad_norm": 0.9708188501717393,
|
2058 |
+
"learning_rate": 6.392769261344502e-06,
|
2059 |
+
"loss": 0.9448,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 1.6761363636363638,
|
2064 |
+
"grad_norm": 0.8777800692748914,
|
2065 |
+
"learning_rate": 6.370890767897078e-06,
|
2066 |
+
"loss": 1.0044,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 1.6818181818181817,
|
2071 |
+
"grad_norm": 1.0244121250661828,
|
2072 |
+
"learning_rate": 6.348983855785122e-06,
|
2073 |
+
"loss": 0.9802,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 1.6875,
|
2078 |
+
"grad_norm": 1.0027302545771752,
|
2079 |
+
"learning_rate": 6.3270489791405055e-06,
|
2080 |
+
"loss": 0.9562,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 1.6931818181818183,
|
2085 |
+
"grad_norm": 1.7051161806513946,
|
2086 |
+
"learning_rate": 6.305086592674802e-06,
|
2087 |
+
"loss": 0.9892,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 1.6988636363636362,
|
2092 |
+
"grad_norm": 1.12580729447642,
|
2093 |
+
"learning_rate": 6.283097151669869e-06,
|
2094 |
+
"loss": 0.9821,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 1.7045454545454546,
|
2099 |
+
"grad_norm": 0.9839470381373491,
|
2100 |
+
"learning_rate": 6.261081111968403e-06,
|
2101 |
+
"loss": 0.9916,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 1.7102272727272727,
|
2106 |
+
"grad_norm": 1.0613072641616672,
|
2107 |
+
"learning_rate": 6.2390389299645e-06,
|
2108 |
+
"loss": 0.9783,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 1.7159090909090908,
|
2113 |
+
"grad_norm": 0.9792881716793711,
|
2114 |
+
"learning_rate": 6.216971062594179e-06,
|
2115 |
+
"loss": 1.0007,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 1.7215909090909092,
|
2120 |
+
"grad_norm": 1.1054016241161089,
|
2121 |
+
"learning_rate": 6.1948779673259256e-06,
|
2122 |
+
"loss": 1.0079,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 1.7272727272727273,
|
2127 |
+
"grad_norm": 1.2013950643084332,
|
2128 |
+
"learning_rate": 6.172760102151195e-06,
|
2129 |
+
"loss": 1.0137,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 1.7329545454545454,
|
2134 |
+
"grad_norm": 1.0486842583129228,
|
2135 |
+
"learning_rate": 6.1506179255749335e-06,
|
2136 |
+
"loss": 0.9611,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 1.7386363636363638,
|
2141 |
+
"grad_norm": 0.9879084512426718,
|
2142 |
+
"learning_rate": 6.128451896606054e-06,
|
2143 |
+
"loss": 0.987,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 1.7443181818181817,
|
2148 |
+
"grad_norm": 0.8702171126549813,
|
2149 |
+
"learning_rate": 6.106262474747939e-06,
|
2150 |
+
"loss": 1.0354,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 1.75,
|
2155 |
+
"grad_norm": 0.9479994120475482,
|
2156 |
+
"learning_rate": 6.084050119988905e-06,
|
2157 |
+
"loss": 0.9687,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 1.7556818181818183,
|
2162 |
+
"grad_norm": 0.841865035975423,
|
2163 |
+
"learning_rate": 6.061815292792666e-06,
|
2164 |
+
"loss": 0.9692,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 1.7613636363636362,
|
2169 |
+
"grad_norm": 1.1986107322286728,
|
2170 |
+
"learning_rate": 6.039558454088796e-06,
|
2171 |
+
"loss": 0.9869,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 1.7670454545454546,
|
2176 |
+
"grad_norm": 0.9606223972077408,
|
2177 |
+
"learning_rate": 6.0172800652631706e-06,
|
2178 |
+
"loss": 1.0164,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 1.7727272727272727,
|
2183 |
+
"grad_norm": 0.8967627253652938,
|
2184 |
+
"learning_rate": 5.994980588148391e-06,
|
2185 |
+
"loss": 1.043,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 1.7784090909090908,
|
2190 |
+
"grad_norm": 0.7941576266062421,
|
2191 |
+
"learning_rate": 5.972660485014231e-06,
|
2192 |
+
"loss": 0.9485,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 1.7840909090909092,
|
2197 |
+
"grad_norm": 1.0936763123716517,
|
2198 |
+
"learning_rate": 5.950320218558037e-06,
|
2199 |
+
"loss": 0.9886,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 1.7897727272727273,
|
2204 |
+
"grad_norm": 1.0795280588915757,
|
2205 |
+
"learning_rate": 5.927960251895146e-06,
|
2206 |
+
"loss": 1.0174,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 1.7954545454545454,
|
2211 |
+
"grad_norm": 0.8880700856278866,
|
2212 |
+
"learning_rate": 5.905581048549279e-06,
|
2213 |
+
"loss": 0.9825,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 1.8011363636363638,
|
2218 |
+
"grad_norm": 0.8742464433982793,
|
2219 |
+
"learning_rate": 5.883183072442938e-06,
|
2220 |
+
"loss": 0.9392,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 1.8068181818181817,
|
2225 |
+
"grad_norm": 0.9015845437433646,
|
2226 |
+
"learning_rate": 5.860766787887781e-06,
|
2227 |
+
"loss": 0.9507,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 1.8125,
|
2232 |
+
"grad_norm": 0.8777902350206828,
|
2233 |
+
"learning_rate": 5.838332659575005e-06,
|
2234 |
+
"loss": 1.0214,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 1.8181818181818183,
|
2239 |
+
"grad_norm": 0.9432419707404883,
|
2240 |
+
"learning_rate": 5.815881152565712e-06,
|
2241 |
+
"loss": 0.9913,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 1.8238636363636362,
|
2246 |
+
"grad_norm": 1.554034736388586,
|
2247 |
+
"learning_rate": 5.793412732281258e-06,
|
2248 |
+
"loss": 0.9762,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 1.8295454545454546,
|
2253 |
+
"grad_norm": 0.9581038943273897,
|
2254 |
+
"learning_rate": 5.7709278644936164e-06,
|
2255 |
+
"loss": 0.9848,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 1.8352272727272727,
|
2260 |
+
"grad_norm": 0.8898637306384684,
|
2261 |
+
"learning_rate": 5.7484270153157215e-06,
|
2262 |
+
"loss": 0.9396,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 1.8409090909090908,
|
2267 |
+
"grad_norm": 1.0203919143753812,
|
2268 |
+
"learning_rate": 5.725910651191798e-06,
|
2269 |
+
"loss": 1.0037,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 1.8465909090909092,
|
2274 |
+
"grad_norm": 0.8907537657379099,
|
2275 |
+
"learning_rate": 5.703379238887703e-06,
|
2276 |
+
"loss": 0.9609,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 1.8522727272727273,
|
2281 |
+
"grad_norm": 1.114214216754724,
|
2282 |
+
"learning_rate": 5.680833245481234e-06,
|
2283 |
+
"loss": 0.9412,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 1.8579545454545454,
|
2288 |
+
"grad_norm": 1.0249614863719094,
|
2289 |
+
"learning_rate": 5.6582731383524625e-06,
|
2290 |
+
"loss": 1.0452,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 1.8636363636363638,
|
2295 |
+
"grad_norm": 0.9715196988270898,
|
2296 |
+
"learning_rate": 5.63569938517404e-06,
|
2297 |
+
"loss": 1.0453,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 1.8693181818181817,
|
2302 |
+
"grad_norm": 1.1613903786334339,
|
2303 |
+
"learning_rate": 5.613112453901493e-06,
|
2304 |
+
"loss": 0.9735,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 1.875,
|
2309 |
+
"grad_norm": 1.059608988677026,
|
2310 |
+
"learning_rate": 5.590512812763541e-06,
|
2311 |
+
"loss": 0.9618,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 1.8806818181818183,
|
2316 |
+
"grad_norm": 1.0952964220643884,
|
2317 |
+
"learning_rate": 5.567900930252375e-06,
|
2318 |
+
"loss": 0.9793,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 1.8863636363636362,
|
2323 |
+
"grad_norm": 1.014146750998599,
|
2324 |
+
"learning_rate": 5.5452772751139496e-06,
|
2325 |
+
"loss": 0.9863,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 1.8920454545454546,
|
2330 |
+
"grad_norm": 0.9663339556094782,
|
2331 |
+
"learning_rate": 5.522642316338268e-06,
|
2332 |
+
"loss": 1.0089,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 1.8977272727272727,
|
2337 |
+
"grad_norm": 0.9872369642699137,
|
2338 |
+
"learning_rate": 5.49999652314966e-06,
|
2339 |
+
"loss": 1.0105,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 1.9034090909090908,
|
2344 |
+
"grad_norm": 0.9388637738282897,
|
2345 |
+
"learning_rate": 5.477340364997051e-06,
|
2346 |
+
"loss": 0.9993,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 1.9090909090909092,
|
2351 |
+
"grad_norm": 1.005111659331097,
|
2352 |
+
"learning_rate": 5.454674311544236e-06,
|
2353 |
+
"loss": 1.024,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 1.9147727272727273,
|
2358 |
+
"grad_norm": 1.1189249784542552,
|
2359 |
+
"learning_rate": 5.431998832660136e-06,
|
2360 |
+
"loss": 0.9167,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 1.9204545454545454,
|
2365 |
+
"grad_norm": 0.8754985353482484,
|
2366 |
+
"learning_rate": 5.409314398409067e-06,
|
2367 |
+
"loss": 0.9509,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 1.9261363636363638,
|
2372 |
+
"grad_norm": 1.0077105144422567,
|
2373 |
+
"learning_rate": 5.386621479040985e-06,
|
2374 |
+
"loss": 0.9802,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 1.9318181818181817,
|
2379 |
+
"grad_norm": 1.014077284312571,
|
2380 |
+
"learning_rate": 5.363920544981749e-06,
|
2381 |
+
"loss": 1.0046,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 1.9375,
|
2386 |
+
"grad_norm": 0.8813929725147835,
|
2387 |
+
"learning_rate": 5.341212066823356e-06,
|
2388 |
+
"loss": 1.006,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 1.9431818181818183,
|
2393 |
+
"grad_norm": 0.9749444900176537,
|
2394 |
+
"learning_rate": 5.3184965153142e-06,
|
2395 |
+
"loss": 0.987,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 1.9488636363636362,
|
2400 |
+
"grad_norm": 0.9433156213620226,
|
2401 |
+
"learning_rate": 5.295774361349299e-06,
|
2402 |
+
"loss": 0.9846,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 1.9545454545454546,
|
2407 |
+
"grad_norm": 0.9268456057648533,
|
2408 |
+
"learning_rate": 5.27304607596055e-06,
|
2409 |
+
"loss": 0.9845,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 1.9602272727272727,
|
2414 |
+
"grad_norm": 0.8554873129583374,
|
2415 |
+
"learning_rate": 5.250312130306946e-06,
|
2416 |
+
"loss": 0.9835,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 1.9659090909090908,
|
2421 |
+
"grad_norm": 1.018982780208351,
|
2422 |
+
"learning_rate": 5.227572995664819e-06,
|
2423 |
+
"loss": 0.9825,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 1.9715909090909092,
|
2428 |
+
"grad_norm": 0.9391997048223797,
|
2429 |
+
"learning_rate": 5.204829143418072e-06,
|
2430 |
+
"loss": 1.0199,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 1.9772727272727273,
|
2435 |
+
"grad_norm": 1.0146418881124983,
|
2436 |
+
"learning_rate": 5.182081045048404e-06,
|
2437 |
+
"loss": 1.0376,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 1.9829545454545454,
|
2442 |
+
"grad_norm": 1.0574567491158355,
|
2443 |
+
"learning_rate": 5.159329172125533e-06,
|
2444 |
+
"loss": 0.9434,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 1.9886363636363638,
|
2449 |
+
"grad_norm": 0.8123284335215641,
|
2450 |
+
"learning_rate": 5.136573996297431e-06,
|
2451 |
+
"loss": 0.9802,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 1.9943181818181817,
|
2456 |
+
"grad_norm": 0.9618851741092689,
|
2457 |
+
"learning_rate": 5.113815989280528e-06,
|
2458 |
+
"loss": 1.0419,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 2.0,
|
2463 |
+
"grad_norm": 0.8632945643175781,
|
2464 |
+
"learning_rate": 5.091055622849958e-06,
|
2465 |
+
"loss": 0.976,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 2.005698005698006,
|
2470 |
+
"grad_norm": 1.6043377134817856,
|
2471 |
+
"learning_rate": 5.068293368829755e-06,
|
2472 |
+
"loss": 0.8913,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 2.011396011396011,
|
2477 |
+
"grad_norm": 1.3331364304662667,
|
2478 |
+
"learning_rate": 5.045529699083092e-06,
|
2479 |
+
"loss": 0.8424,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 2.017094017094017,
|
2484 |
+
"grad_norm": 1.100343372994173,
|
2485 |
+
"learning_rate": 5.022765085502478e-06,
|
2486 |
+
"loss": 0.8664,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 2.022792022792023,
|
2491 |
+
"grad_norm": 1.2647408619538267,
|
2492 |
+
"learning_rate": 5e-06,
|
2493 |
+
"loss": 0.8975,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 2.0284900284900287,
|
2498 |
+
"grad_norm": 1.3692030374819484,
|
2499 |
+
"learning_rate": 4.977234914497522e-06,
|
2500 |
+
"loss": 0.8659,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 2.034188034188034,
|
2505 |
+
"grad_norm": 1.04165152843705,
|
2506 |
+
"learning_rate": 4.9544703009169115e-06,
|
2507 |
+
"loss": 0.8465,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 2.03988603988604,
|
2512 |
+
"grad_norm": 1.069447973622135,
|
2513 |
+
"learning_rate": 4.931706631170246e-06,
|
2514 |
+
"loss": 0.8254,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 2.0455840455840457,
|
2519 |
+
"grad_norm": 1.1882943942044963,
|
2520 |
+
"learning_rate": 4.9089443771500435e-06,
|
2521 |
+
"loss": 0.8759,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 2.051282051282051,
|
2526 |
+
"grad_norm": 0.9445235142025882,
|
2527 |
+
"learning_rate": 4.886184010719472e-06,
|
2528 |
+
"loss": 0.8761,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 2.056980056980057,
|
2533 |
+
"grad_norm": 0.9617221724763185,
|
2534 |
+
"learning_rate": 4.863426003702572e-06,
|
2535 |
+
"loss": 0.822,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 2.0626780626780628,
|
2540 |
+
"grad_norm": 0.9901232814378744,
|
2541 |
+
"learning_rate": 4.840670827874468e-06,
|
2542 |
+
"loss": 0.8423,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 2.0683760683760686,
|
2547 |
+
"grad_norm": 0.8710776051974528,
|
2548 |
+
"learning_rate": 4.817918954951598e-06,
|
2549 |
+
"loss": 0.8415,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 2.074074074074074,
|
2554 |
+
"grad_norm": 1.2482792899259578,
|
2555 |
+
"learning_rate": 4.795170856581929e-06,
|
2556 |
+
"loss": 0.8921,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 2.07977207977208,
|
2561 |
+
"grad_norm": 1.1169049347453446,
|
2562 |
+
"learning_rate": 4.772427004335183e-06,
|
2563 |
+
"loss": 0.8731,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 2.0854700854700856,
|
2568 |
+
"grad_norm": 1.0557231424552356,
|
2569 |
+
"learning_rate": 4.749687869693056e-06,
|
2570 |
+
"loss": 0.8622,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 2.091168091168091,
|
2575 |
+
"grad_norm": 0.9181343036612701,
|
2576 |
+
"learning_rate": 4.7269539240394505e-06,
|
2577 |
+
"loss": 0.8653,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 2.096866096866097,
|
2582 |
+
"grad_norm": 0.9543401797100639,
|
2583 |
+
"learning_rate": 4.7042256386507e-06,
|
2584 |
+
"loss": 0.8419,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 2.1025641025641026,
|
2589 |
+
"grad_norm": 1.192131842860604,
|
2590 |
+
"learning_rate": 4.681503484685803e-06,
|
2591 |
+
"loss": 0.9153,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 2.1082621082621085,
|
2596 |
+
"grad_norm": 0.9650701175336839,
|
2597 |
+
"learning_rate": 4.6587879331766465e-06,
|
2598 |
+
"loss": 0.8422,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 2.113960113960114,
|
2603 |
+
"grad_norm": 0.9343115020962703,
|
2604 |
+
"learning_rate": 4.636079455018253e-06,
|
2605 |
+
"loss": 0.8433,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 2.1196581196581197,
|
2610 |
+
"grad_norm": 0.9058357605337869,
|
2611 |
+
"learning_rate": 4.613378520959016e-06,
|
2612 |
+
"loss": 0.8587,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 2.1253561253561255,
|
2617 |
+
"grad_norm": 0.9303289966062062,
|
2618 |
+
"learning_rate": 4.5906856015909365e-06,
|
2619 |
+
"loss": 0.8799,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 2.131054131054131,
|
2624 |
+
"grad_norm": 0.9993338551104146,
|
2625 |
+
"learning_rate": 4.568001167339866e-06,
|
2626 |
+
"loss": 0.8789,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 2.1367521367521367,
|
2631 |
+
"grad_norm": 1.003313234824171,
|
2632 |
+
"learning_rate": 4.545325688455766e-06,
|
2633 |
+
"loss": 0.8285,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 2.1424501424501425,
|
2638 |
+
"grad_norm": 0.9365672809002463,
|
2639 |
+
"learning_rate": 4.52265963500295e-06,
|
2640 |
+
"loss": 0.8561,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 2.148148148148148,
|
2645 |
+
"grad_norm": 0.8712507036248811,
|
2646 |
+
"learning_rate": 4.500003476850341e-06,
|
2647 |
+
"loss": 0.8262,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 2.1538461538461537,
|
2652 |
+
"grad_norm": 0.9228004881023822,
|
2653 |
+
"learning_rate": 4.477357683661734e-06,
|
2654 |
+
"loss": 0.8766,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 2.1595441595441596,
|
2659 |
+
"grad_norm": 1.057083805253911,
|
2660 |
+
"learning_rate": 4.454722724886051e-06,
|
2661 |
+
"loss": 0.8653,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 2.1652421652421654,
|
2666 |
+
"grad_norm": 0.9682059205532203,
|
2667 |
+
"learning_rate": 4.432099069747625e-06,
|
2668 |
+
"loss": 0.8305,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 2.1709401709401708,
|
2673 |
+
"grad_norm": 0.7938300778290989,
|
2674 |
+
"learning_rate": 4.40948718723646e-06,
|
2675 |
+
"loss": 0.8526,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 2.1766381766381766,
|
2680 |
+
"grad_norm": 0.992854757801764,
|
2681 |
+
"learning_rate": 4.386887546098509e-06,
|
2682 |
+
"loss": 0.7915,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 2.1823361823361824,
|
2687 |
+
"grad_norm": 1.1405534353610247,
|
2688 |
+
"learning_rate": 4.364300614825963e-06,
|
2689 |
+
"loss": 0.8756,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 2.1880341880341883,
|
2694 |
+
"grad_norm": 0.9074206322121355,
|
2695 |
+
"learning_rate": 4.341726861647537e-06,
|
2696 |
+
"loss": 0.8786,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 2.1937321937321936,
|
2701 |
+
"grad_norm": 0.9106405803513904,
|
2702 |
+
"learning_rate": 4.319166754518768e-06,
|
2703 |
+
"loss": 0.8736,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 2.1994301994301995,
|
2708 |
+
"grad_norm": 0.9498694178857152,
|
2709 |
+
"learning_rate": 4.296620761112299e-06,
|
2710 |
+
"loss": 0.8382,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 2.2051282051282053,
|
2715 |
+
"grad_norm": 0.9662171207890898,
|
2716 |
+
"learning_rate": 4.274089348808202e-06,
|
2717 |
+
"loss": 0.846,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 2.2108262108262107,
|
2722 |
+
"grad_norm": 0.9597347828021979,
|
2723 |
+
"learning_rate": 4.251572984684281e-06,
|
2724 |
+
"loss": 0.8565,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 2.2165242165242165,
|
2729 |
+
"grad_norm": 1.0199048543960996,
|
2730 |
+
"learning_rate": 4.229072135506384e-06,
|
2731 |
+
"loss": 0.8634,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 2.2222222222222223,
|
2736 |
+
"grad_norm": 0.8699841121610784,
|
2737 |
+
"learning_rate": 4.206587267718743e-06,
|
2738 |
+
"loss": 0.8704,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 2.2279202279202277,
|
2743 |
+
"grad_norm": 0.9870860597778771,
|
2744 |
+
"learning_rate": 4.18411884743429e-06,
|
2745 |
+
"loss": 0.9155,
|
2746 |
+
"step": 391
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 2.2336182336182335,
|
2750 |
+
"grad_norm": 0.9765675083733482,
|
2751 |
+
"learning_rate": 4.161667340424996e-06,
|
2752 |
+
"loss": 0.9111,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 2.2393162393162394,
|
2757 |
+
"grad_norm": 1.0450993205368777,
|
2758 |
+
"learning_rate": 4.139233212112221e-06,
|
2759 |
+
"loss": 0.8791,
|
2760 |
+
"step": 393
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 2.245014245014245,
|
2764 |
+
"grad_norm": 1.1146726034384589,
|
2765 |
+
"learning_rate": 4.116816927557063e-06,
|
2766 |
+
"loss": 0.8808,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 2.2507122507122506,
|
2771 |
+
"grad_norm": 0.9072001670881498,
|
2772 |
+
"learning_rate": 4.094418951450721e-06,
|
2773 |
+
"loss": 0.855,
|
2774 |
+
"step": 395
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 2.2564102564102564,
|
2778 |
+
"grad_norm": 0.928713607803712,
|
2779 |
+
"learning_rate": 4.072039748104856e-06,
|
2780 |
+
"loss": 0.8895,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 2.262108262108262,
|
2785 |
+
"grad_norm": 0.9633556898613354,
|
2786 |
+
"learning_rate": 4.0496797814419655e-06,
|
2787 |
+
"loss": 0.8809,
|
2788 |
+
"step": 397
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 2.267806267806268,
|
2792 |
+
"grad_norm": 0.8844497867372285,
|
2793 |
+
"learning_rate": 4.0273395149857705e-06,
|
2794 |
+
"loss": 0.841,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 2.2735042735042734,
|
2799 |
+
"grad_norm": 0.9239145256816056,
|
2800 |
+
"learning_rate": 4.0050194118516095e-06,
|
2801 |
+
"loss": 0.8251,
|
2802 |
+
"step": 399
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 2.2792022792022792,
|
2806 |
+
"grad_norm": 1.1068686883079584,
|
2807 |
+
"learning_rate": 3.982719934736832e-06,
|
2808 |
+
"loss": 0.8515,
|
2809 |
+
"step": 400
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 2.284900284900285,
|
2813 |
+
"grad_norm": 1.178223126387429,
|
2814 |
+
"learning_rate": 3.960441545911205e-06,
|
2815 |
+
"loss": 0.886,
|
2816 |
+
"step": 401
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 2.2905982905982905,
|
2820 |
+
"grad_norm": 0.8243442773624833,
|
2821 |
+
"learning_rate": 3.9381847072073346e-06,
|
2822 |
+
"loss": 0.8073,
|
2823 |
+
"step": 402
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 2.2962962962962963,
|
2827 |
+
"grad_norm": 0.8877251522703663,
|
2828 |
+
"learning_rate": 3.915949880011096e-06,
|
2829 |
+
"loss": 0.8376,
|
2830 |
+
"step": 403
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 2.301994301994302,
|
2834 |
+
"grad_norm": 1.1086289853786166,
|
2835 |
+
"learning_rate": 3.893737525252063e-06,
|
2836 |
+
"loss": 0.835,
|
2837 |
+
"step": 404
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 2.3076923076923075,
|
2841 |
+
"grad_norm": 0.9736495968403257,
|
2842 |
+
"learning_rate": 3.871548103393947e-06,
|
2843 |
+
"loss": 0.8366,
|
2844 |
+
"step": 405
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 2.3133903133903133,
|
2848 |
+
"grad_norm": 0.883727910369667,
|
2849 |
+
"learning_rate": 3.849382074425069e-06,
|
2850 |
+
"loss": 0.8788,
|
2851 |
+
"step": 406
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 2.319088319088319,
|
2855 |
+
"grad_norm": 0.9302042209091447,
|
2856 |
+
"learning_rate": 3.827239897848805e-06,
|
2857 |
+
"loss": 0.8105,
|
2858 |
+
"step": 407
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 2.324786324786325,
|
2862 |
+
"grad_norm": 0.9816375724049557,
|
2863 |
+
"learning_rate": 3.805122032674077e-06,
|
2864 |
+
"loss": 0.8801,
|
2865 |
+
"step": 408
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 2.3304843304843303,
|
2869 |
+
"grad_norm": 0.9068093342113286,
|
2870 |
+
"learning_rate": 3.7830289374058214e-06,
|
2871 |
+
"loss": 0.8926,
|
2872 |
+
"step": 409
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 2.336182336182336,
|
2876 |
+
"grad_norm": 0.970100166469761,
|
2877 |
+
"learning_rate": 3.7609610700355014e-06,
|
2878 |
+
"loss": 0.8172,
|
2879 |
+
"step": 410
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 2.341880341880342,
|
2883 |
+
"grad_norm": 0.8283355970207111,
|
2884 |
+
"learning_rate": 3.7389188880315962e-06,
|
2885 |
+
"loss": 0.8541,
|
2886 |
+
"step": 411
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 2.347578347578348,
|
2890 |
+
"grad_norm": 0.836387825954222,
|
2891 |
+
"learning_rate": 3.7169028483301333e-06,
|
2892 |
+
"loss": 0.8566,
|
2893 |
+
"step": 412
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 2.353276353276353,
|
2897 |
+
"grad_norm": 0.9704274187846976,
|
2898 |
+
"learning_rate": 3.6949134073251993e-06,
|
2899 |
+
"loss": 0.856,
|
2900 |
+
"step": 413
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 2.358974358974359,
|
2904 |
+
"grad_norm": 0.8667279540573334,
|
2905 |
+
"learning_rate": 3.6729510208594954e-06,
|
2906 |
+
"loss": 0.896,
|
2907 |
+
"step": 414
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 2.364672364672365,
|
2911 |
+
"grad_norm": 0.9194321407732738,
|
2912 |
+
"learning_rate": 3.6510161442148783e-06,
|
2913 |
+
"loss": 0.8993,
|
2914 |
+
"step": 415
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 2.3703703703703702,
|
2918 |
+
"grad_norm": 0.8956254209520699,
|
2919 |
+
"learning_rate": 3.6291092321029244e-06,
|
2920 |
+
"loss": 0.871,
|
2921 |
+
"step": 416
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 2.376068376068376,
|
2925 |
+
"grad_norm": 0.8944268521885398,
|
2926 |
+
"learning_rate": 3.6072307386554983e-06,
|
2927 |
+
"loss": 0.8958,
|
2928 |
+
"step": 417
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 2.381766381766382,
|
2932 |
+
"grad_norm": 0.8881931841978906,
|
2933 |
+
"learning_rate": 3.58538111741535e-06,
|
2934 |
+
"loss": 0.8718,
|
2935 |
+
"step": 418
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 2.3874643874643873,
|
2939 |
+
"grad_norm": 0.8513595068343849,
|
2940 |
+
"learning_rate": 3.5635608213267063e-06,
|
2941 |
+
"loss": 0.8484,
|
2942 |
+
"step": 419
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 2.393162393162393,
|
2946 |
+
"grad_norm": 0.9552616565495209,
|
2947 |
+
"learning_rate": 3.5417703027258752e-06,
|
2948 |
+
"loss": 0.8576,
|
2949 |
+
"step": 420
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 2.398860398860399,
|
2953 |
+
"grad_norm": 0.884306660742374,
|
2954 |
+
"learning_rate": 3.5200100133318836e-06,
|
2955 |
+
"loss": 0.8623,
|
2956 |
+
"step": 421
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 2.4045584045584047,
|
2960 |
+
"grad_norm": 0.8217549127604973,
|
2961 |
+
"learning_rate": 3.4982804042370977e-06,
|
2962 |
+
"loss": 0.8789,
|
2963 |
+
"step": 422
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 2.41025641025641,
|
2967 |
+
"grad_norm": 0.9177953454550434,
|
2968 |
+
"learning_rate": 3.476581925897885e-06,
|
2969 |
+
"loss": 0.8761,
|
2970 |
+
"step": 423
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 2.415954415954416,
|
2974 |
+
"grad_norm": 0.9191232531329524,
|
2975 |
+
"learning_rate": 3.4549150281252635e-06,
|
2976 |
+
"loss": 0.8381,
|
2977 |
+
"step": 424
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 2.421652421652422,
|
2981 |
+
"grad_norm": 0.8942193186940697,
|
2982 |
+
"learning_rate": 3.4332801600755895e-06,
|
2983 |
+
"loss": 0.9022,
|
2984 |
+
"step": 425
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 2.427350427350427,
|
2988 |
+
"grad_norm": 1.2155759035608542,
|
2989 |
+
"learning_rate": 3.4116777702412374e-06,
|
2990 |
+
"loss": 0.8673,
|
2991 |
+
"step": 426
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 2.433048433048433,
|
2995 |
+
"grad_norm": 0.928253119658496,
|
2996 |
+
"learning_rate": 3.39010830644131e-06,
|
2997 |
+
"loss": 0.8412,
|
2998 |
+
"step": 427
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 2.438746438746439,
|
3002 |
+
"grad_norm": 0.8976369958824371,
|
3003 |
+
"learning_rate": 3.3685722158123435e-06,
|
3004 |
+
"loss": 0.8572,
|
3005 |
+
"step": 428
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 2.4444444444444446,
|
3009 |
+
"grad_norm": 0.9342007055562026,
|
3010 |
+
"learning_rate": 3.3470699447990527e-06,
|
3011 |
+
"loss": 0.8389,
|
3012 |
+
"step": 429
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 2.45014245014245,
|
3016 |
+
"grad_norm": 0.9368785720862421,
|
3017 |
+
"learning_rate": 3.3256019391450696e-06,
|
3018 |
+
"loss": 0.8447,
|
3019 |
+
"step": 430
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 2.455840455840456,
|
3023 |
+
"grad_norm": 0.8602147398886509,
|
3024 |
+
"learning_rate": 3.3041686438836984e-06,
|
3025 |
+
"loss": 0.8314,
|
3026 |
+
"step": 431
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 2.4615384615384617,
|
3030 |
+
"grad_norm": 0.7971529130684335,
|
3031 |
+
"learning_rate": 3.2827705033286937e-06,
|
3032 |
+
"loss": 0.8075,
|
3033 |
+
"step": 432
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 2.467236467236467,
|
3037 |
+
"grad_norm": 0.9022354930189497,
|
3038 |
+
"learning_rate": 3.261407961065056e-06,
|
3039 |
+
"loss": 0.864,
|
3040 |
+
"step": 433
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 2.472934472934473,
|
3044 |
+
"grad_norm": 0.8412103377280404,
|
3045 |
+
"learning_rate": 3.2400814599398283e-06,
|
3046 |
+
"loss": 0.825,
|
3047 |
+
"step": 434
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 2.4786324786324787,
|
3051 |
+
"grad_norm": 0.963324698161768,
|
3052 |
+
"learning_rate": 3.2187914420529176e-06,
|
3053 |
+
"loss": 0.8245,
|
3054 |
+
"step": 435
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 2.484330484330484,
|
3058 |
+
"grad_norm": 0.8974616882015672,
|
3059 |
+
"learning_rate": 3.197538348747927e-06,
|
3060 |
+
"loss": 0.8574,
|
3061 |
+
"step": 436
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 2.49002849002849,
|
3065 |
+
"grad_norm": 0.8375456208735425,
|
3066 |
+
"learning_rate": 3.176322620603018e-06,
|
3067 |
+
"loss": 0.8567,
|
3068 |
+
"step": 437
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 2.4957264957264957,
|
3072 |
+
"grad_norm": 0.8637885686817552,
|
3073 |
+
"learning_rate": 3.1551446974217643e-06,
|
3074 |
+
"loss": 0.8348,
|
3075 |
+
"step": 438
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 2.5014245014245016,
|
3079 |
+
"grad_norm": 0.8964567431940926,
|
3080 |
+
"learning_rate": 3.1340050182240438e-06,
|
3081 |
+
"loss": 0.8614,
|
3082 |
+
"step": 439
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 2.5071225071225074,
|
3086 |
+
"grad_norm": 1.0153388506539311,
|
3087 |
+
"learning_rate": 3.1129040212369286e-06,
|
3088 |
+
"loss": 0.8288,
|
3089 |
+
"step": 440
|
3090 |
+
}
|
3091 |
+
],
|
3092 |
+
"logging_steps": 1,
|
3093 |
+
"max_steps": 700,
|
3094 |
+
"num_input_tokens_seen": 0,
|
3095 |
+
"num_train_epochs": 4,
|
3096 |
+
"save_steps": 88,
|
3097 |
+
"stateful_callbacks": {
|
3098 |
+
"TrainerControl": {
|
3099 |
+
"args": {
|
3100 |
+
"should_epoch_stop": false,
|
3101 |
+
"should_evaluate": false,
|
3102 |
+
"should_log": false,
|
3103 |
+
"should_save": true,
|
3104 |
+
"should_training_stop": false
|
3105 |
+
},
|
3106 |
+
"attributes": {}
|
3107 |
+
}
|
3108 |
+
},
|
3109 |
+
"total_flos": 4.6500642935537664e+17,
|
3110 |
+
"train_batch_size": 2,
|
3111 |
+
"trial_name": null,
|
3112 |
+
"trial_params": null
|
3113 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5be3508df238385d3f668c05369bdfc5feb2ccf9045b1ef48250ac9c5b11c08
|
3 |
+
size 8056
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|