Delta-Vector commited on
Commit
9fcc009
·
verified ·
1 Parent(s): 57811ec

Upload folder using huggingface_hub

Browse files
Files changed (45) hide show
  1. config.json +28 -0
  2. generation_config.json +7 -0
  3. global_step440/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  4. global_step440/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  5. global_step440/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  6. global_step440/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  7. global_step440/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  8. global_step440/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  9. global_step440/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  10. global_step440/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  11. global_step440/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt +3 -0
  12. global_step440/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt +3 -0
  13. global_step440/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. global_step440/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. global_step440/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. global_step440/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. global_step440/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. global_step440/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. global_step440/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. global_step440/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  21. global_step440/zero_pp_rank_8_mp_rank_00_model_states.pt +3 -0
  22. global_step440/zero_pp_rank_9_mp_rank_00_model_states.pt +3 -0
  23. latest +1 -0
  24. model-00001-of-00004.safetensors +3 -0
  25. model-00002-of-00004.safetensors +3 -0
  26. model-00003-of-00004.safetensors +3 -0
  27. model-00004-of-00004.safetensors +3 -0
  28. model.safetensors.index.json +370 -0
  29. rng_state_0.pth +3 -0
  30. rng_state_1.pth +3 -0
  31. rng_state_2.pth +3 -0
  32. rng_state_3.pth +3 -0
  33. rng_state_4.pth +3 -0
  34. rng_state_5.pth +3 -0
  35. rng_state_6.pth +3 -0
  36. rng_state_7.pth +3 -0
  37. rng_state_8.pth +3 -0
  38. rng_state_9.pth +3 -0
  39. scheduler.pt +3 -0
  40. special_tokens_map.json +30 -0
  41. tokenizer.json +0 -0
  42. tokenizer_config.json +0 -0
  43. trainer_state.json +3113 -0
  44. training_args.bin +3 -0
  45. zero_to_fp32.py +604 -0
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML",
3
+ "activation": "silu",
4
+ "architectures": [
5
+ "MistralForCausalLM"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11520,
15
+ "max_position_embeddings": 16384,
16
+ "model_type": "mistral",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 40,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.45.0.dev0",
26
+ "use_cache": false,
27
+ "vocab_size": 131072
28
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.45.0.dev0"
7
+ }
global_step440/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4e1892fccb1f5b61519c4b68054eb77f3e364612fafd12d51eb02824cacc5f4
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d45eeb8987a65b2a8ae2bc04dd0b993c01b0c91117cfe7eff2e8dc0b0c19e78e
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2e9f69689b19310197439af58fecb918f5e5e7c2d240073bdb6e8f5a45fd321
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:515754c2930bd8918f50be39b4b2fafb1d153a06749afcc6401b41097a66f9fa
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56c97cfc4690ed2c1b978d20f910b34d7e593fcb2f876f4c627035a2fc702389
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01cf4e5ed54b0b60dd6d33fb094c741d25cb3687d1fffbfabad1424c62711799
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cce19161455549a5dd67aad8fe5e56ad1a76451ee76ab34826481a90a0772d2a
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4993dd64d9b37987b01c0487015a9d965f78504ece3cc950378b0286ed21444
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:510440f9ea474120d4d7f337c53162fa4b0f0352312803323c7ba45f9b43cfa8
3
+ size 5053293693
global_step440/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:657702f6b16019d2f433482d197a9f4bfb9784cd12e1ab29277944d38e5f6fd9
3
+ size 5053293693
global_step440/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aecba0a00aa37a5f2a9097df806298a0c1c2ffd84ca73f226cadbd3ce7b454c2
3
+ size 189645
global_step440/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ca983d986f730827db4f114406f0eabf3bbf31cf41f02aff3eaa9b218697920
3
+ size 189645
global_step440/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e66df0220565c235cc534097605a9af3c7ab4a194bc903b533ba54fd819fb7cc
3
+ size 189645
global_step440/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e142494c598b04dc08349e81bb4a694d10e8c236af7f381cf464a063dae1288b
3
+ size 189645
global_step440/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:453d93994c1ca32e4481560b977f05611a1924408a7133ee8c254661c274f1cd
3
+ size 189645
global_step440/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6d7b46d677e236130acce354fc4bb7af0268947ab0f1e0964a2f29b55d67474
3
+ size 189645
global_step440/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6a92dedc539cebf843b12116d7f17900e303a1652ea831112dfebd20c5e39e5
3
+ size 189645
global_step440/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9384d62406e7476229a0323dd57d5c2b233367e09b885406d68244f48a6b9ab
3
+ size 189645
global_step440/zero_pp_rank_8_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90ca32adda8e8d31a105368abafce1aad0e2c573b45cf208352395b6dd59c5dd
3
+ size 189645
global_step440/zero_pp_rank_9_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaee2c424aa1b7808a13829a8e7e88044b10f872c9c53cca32598197eb2c9178
3
+ size 189645
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step440
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cb8232c10e49a54006ef8f4a3f582416702fc7a6e93f46ddce37de7eac2546b
3
+ size 4922190736
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85502b4ccb9e876f680020d2957bf483860e9185b5a3ac5cd5b9aa1fbc400344
3
+ size 4993562512
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bf5e91f236a32432bdd544abbf7acab898912a62971272336851ea044ff3772
3
+ size 4915951392
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb12053ec87b7b13a01b8f40441b2e0c36b6f1e13c2842d40afb674208824311
3
+ size 1996548832
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16828211200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.norm.weight": "model-00004-of-00004.safetensors"
369
+ }
370
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0aa8d754b2ad5fb3d2883bd456cfa6efeb1eac60c747ce65e79c96c06d528f3
3
+ size 16433
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b9849ab72a5239e50f978600bc70a15bb6e61cb0a305921395701a1830d5bdb
3
+ size 16433
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ad578b84fb357d56561532e7d9081a21829b3411289d156b0e3acd82e6f4b2a
3
+ size 16433
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:460106a5e058f8ed54eb8092eae8ea5e3637e45537a05ed2b1f5352e2f2658a1
3
+ size 16433
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6ba57c5ad6b6b514b6167b7009fbca3b23e278503129319b9a50b3b200fd0bb
3
+ size 16433
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2bd6a33cbc36a6489cc21248f1403d2add8dba68b5b33f7ba4942b965b48729
3
+ size 16433
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40c27d75a3d8a92ab7ab1db8a675621b8dfc51d774b579d5817a1b5cc3de3794
3
+ size 16433
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeaf9e5ec5202e12cb139961f8dcf1188e96c05a823842dc3b3535830181c19c
3
+ size 16433
rng_state_8.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d5306c3330ce0adb54843ea6d22dd15d8865ec287d3d0ee1fb2977a636645ec
3
+ size 16433
rng_state_9.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7920b162e3da8f1a3dda9fa9982d5ec65916bd8f2cb62ef1b327c65abab79c25
3
+ size 16433
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2292bbec4711f1db4b36e855be7557f1c648808b793f674077cd57b7cf585b84
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,3113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.5071225071225074,
5
+ "eval_steps": 500,
6
+ "global_step": 440,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0056657223796034,
13
+ "grad_norm": 24.973131796915897,
14
+ "learning_rate": 1.0000000000000002e-06,
15
+ "loss": 1.8537,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0113314447592068,
20
+ "grad_norm": 32.79573813738381,
21
+ "learning_rate": 2.0000000000000003e-06,
22
+ "loss": 2.0212,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0169971671388102,
27
+ "grad_norm": 23.800880905805656,
28
+ "learning_rate": 3e-06,
29
+ "loss": 2.1456,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0226628895184136,
34
+ "grad_norm": 19.091198715081358,
35
+ "learning_rate": 4.000000000000001e-06,
36
+ "loss": 1.9808,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.028328611898016998,
41
+ "grad_norm": 14.124470348172405,
42
+ "learning_rate": 5e-06,
43
+ "loss": 2.1825,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0339943342776204,
48
+ "grad_norm": 11.461608032959802,
49
+ "learning_rate": 6e-06,
50
+ "loss": 1.6353,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.039660056657223795,
55
+ "grad_norm": 10.354681496346823,
56
+ "learning_rate": 7e-06,
57
+ "loss": 1.9076,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0453257790368272,
62
+ "grad_norm": 10.167669680172194,
63
+ "learning_rate": 8.000000000000001e-06,
64
+ "loss": 1.4754,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.05099150141643059,
69
+ "grad_norm": 7.5541696713086255,
70
+ "learning_rate": 9e-06,
71
+ "loss": 1.6213,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.056657223796033995,
76
+ "grad_norm": 4.087852973173369,
77
+ "learning_rate": 1e-05,
78
+ "loss": 1.5217,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.06232294617563739,
83
+ "grad_norm": 4.071392878063137,
84
+ "learning_rate": 9.999948174819623e-06,
85
+ "loss": 1.6551,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0679886685552408,
90
+ "grad_norm": 5.2075402015034,
91
+ "learning_rate": 9.999792700352826e-06,
92
+ "loss": 1.4474,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.07365439093484419,
97
+ "grad_norm": 3.6492933345906637,
98
+ "learning_rate": 9.999533579822611e-06,
99
+ "loss": 1.5585,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.07932011331444759,
104
+ "grad_norm": 6.482920810973195,
105
+ "learning_rate": 9.999170818600562e-06,
106
+ "loss": 1.3317,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.08498583569405099,
111
+ "grad_norm": 4.137365745831386,
112
+ "learning_rate": 9.998704424206747e-06,
113
+ "loss": 1.4029,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.0906515580736544,
118
+ "grad_norm": 4.745717244720069,
119
+ "learning_rate": 9.998134406309555e-06,
120
+ "loss": 1.6586,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.09631728045325778,
125
+ "grad_norm": 5.4377770096801346,
126
+ "learning_rate": 9.997460776725497e-06,
127
+ "loss": 1.365,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.10198300283286119,
132
+ "grad_norm": 3.317130182493388,
133
+ "learning_rate": 9.996683549418964e-06,
134
+ "loss": 1.4956,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.10764872521246459,
139
+ "grad_norm": 1.7845609616841893,
140
+ "learning_rate": 9.995802740501933e-06,
141
+ "loss": 1.3472,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.11331444759206799,
146
+ "grad_norm": 14.387033772755194,
147
+ "learning_rate": 9.994818368233639e-06,
148
+ "loss": 1.4116,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.11898016997167139,
153
+ "grad_norm": 6.920700020611593,
154
+ "learning_rate": 9.993730453020187e-06,
155
+ "loss": 1.2776,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.12464589235127478,
160
+ "grad_norm": 6.05951274644599,
161
+ "learning_rate": 9.99253901741414e-06,
162
+ "loss": 1.4433,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.13031161473087818,
167
+ "grad_norm": 3.0541449788715935,
168
+ "learning_rate": 9.991244086114046e-06,
169
+ "loss": 1.3396,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.1359773371104816,
174
+ "grad_norm": 1.8438099140328046,
175
+ "learning_rate": 9.989845685963917e-06,
176
+ "loss": 1.3061,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.141643059490085,
181
+ "grad_norm": 4.048301070320613,
182
+ "learning_rate": 9.988343845952697e-06,
183
+ "loss": 1.2283,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.14730878186968838,
188
+ "grad_norm": 3.5627296346591457,
189
+ "learning_rate": 9.986738597213633e-06,
190
+ "loss": 1.2865,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.1529745042492918,
195
+ "grad_norm": 2.237494567304501,
196
+ "learning_rate": 9.98502997302365e-06,
197
+ "loss": 1.3233,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.15864022662889518,
202
+ "grad_norm": 3.479719952104877,
203
+ "learning_rate": 9.983218008802648e-06,
204
+ "loss": 1.3033,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.1643059490084986,
209
+ "grad_norm": 2.066121083229141,
210
+ "learning_rate": 9.98130274211278e-06,
211
+ "loss": 1.3326,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.16997167138810199,
216
+ "grad_norm": 4.090684571263736,
217
+ "learning_rate": 9.979284212657658e-06,
218
+ "loss": 1.3102,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.17563739376770537,
223
+ "grad_norm": 2.369637256277251,
224
+ "learning_rate": 9.977162462281544e-06,
225
+ "loss": 1.4067,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1813031161473088,
230
+ "grad_norm": 1.4378564529803546,
231
+ "learning_rate": 9.97493753496848e-06,
232
+ "loss": 1.2409,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.18696883852691218,
237
+ "grad_norm": 1.810353068849482,
238
+ "learning_rate": 9.972609476841368e-06,
239
+ "loss": 1.2659,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.19263456090651557,
244
+ "grad_norm": 2.954930884156565,
245
+ "learning_rate": 9.970178336161018e-06,
246
+ "loss": 1.3727,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.19830028328611898,
251
+ "grad_norm": 2.053307140265503,
252
+ "learning_rate": 9.967644163325157e-06,
253
+ "loss": 1.3463,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.20396600566572237,
258
+ "grad_norm": 1.8032124432327943,
259
+ "learning_rate": 9.965007010867366e-06,
260
+ "loss": 1.1998,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.2096317280453258,
265
+ "grad_norm": 1.4952983263862012,
266
+ "learning_rate": 9.962266933456008e-06,
267
+ "loss": 1.2829,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.21529745042492918,
272
+ "grad_norm": 1.3649794008291625,
273
+ "learning_rate": 9.959423987893086e-06,
274
+ "loss": 1.2056,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.22096317280453256,
279
+ "grad_norm": 1.4380773398306634,
280
+ "learning_rate": 9.956478233113066e-06,
281
+ "loss": 1.29,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.22662889518413598,
286
+ "grad_norm": 1.6072540934424309,
287
+ "learning_rate": 9.953429730181653e-06,
288
+ "loss": 1.2593,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.23229461756373937,
293
+ "grad_norm": 1.6010739399694889,
294
+ "learning_rate": 9.95027854229454e-06,
295
+ "loss": 1.2117,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.23796033994334279,
300
+ "grad_norm": 1.2474393925785745,
301
+ "learning_rate": 9.947024734776076e-06,
302
+ "loss": 1.2022,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.24362606232294617,
307
+ "grad_norm": 1.4019264249340568,
308
+ "learning_rate": 9.943668375077926e-06,
309
+ "loss": 1.2365,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.24929178470254956,
314
+ "grad_norm": 1.5087040675714003,
315
+ "learning_rate": 9.940209532777666e-06,
316
+ "loss": 1.274,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.254957507082153,
321
+ "grad_norm": 1.1953570915609946,
322
+ "learning_rate": 9.93664827957735e-06,
323
+ "loss": 1.2526,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.26062322946175637,
328
+ "grad_norm": 1.4826450819224886,
329
+ "learning_rate": 9.932984689302012e-06,
330
+ "loss": 1.1978,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.26628895184135976,
335
+ "grad_norm": 1.1937833972167977,
336
+ "learning_rate": 9.929218837898143e-06,
337
+ "loss": 1.1816,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.2719546742209632,
342
+ "grad_norm": 1.1238100782353855,
343
+ "learning_rate": 9.925350803432112e-06,
344
+ "loss": 1.1931,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.2776203966005666,
349
+ "grad_norm": 1.3338900623153498,
350
+ "learning_rate": 9.921380666088558e-06,
351
+ "loss": 1.1978,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.28328611898017,
356
+ "grad_norm": 1.3236848667289738,
357
+ "learning_rate": 9.917308508168712e-06,
358
+ "loss": 1.2551,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.28895184135977336,
363
+ "grad_norm": 1.425578635546673,
364
+ "learning_rate": 9.913134414088698e-06,
365
+ "loss": 1.2441,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.29461756373937675,
370
+ "grad_norm": 1.171581674684746,
371
+ "learning_rate": 9.908858470377793e-06,
372
+ "loss": 1.2369,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.3002832861189802,
377
+ "grad_norm": 1.1564744150302062,
378
+ "learning_rate": 9.904480765676617e-06,
379
+ "loss": 1.209,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.3059490084985836,
384
+ "grad_norm": 1.1357504524893798,
385
+ "learning_rate": 9.9000013907353e-06,
386
+ "loss": 1.2152,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.311614730878187,
391
+ "grad_norm": 1.0498825437855333,
392
+ "learning_rate": 9.895420438411616e-06,
393
+ "loss": 1.2043,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.31728045325779036,
398
+ "grad_norm": 1.6465219316145685,
399
+ "learning_rate": 9.890738003669029e-06,
400
+ "loss": 1.2289,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.32294617563739375,
405
+ "grad_norm": 1.711551232749367,
406
+ "learning_rate": 9.885954183574753e-06,
407
+ "loss": 1.1831,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.3286118980169972,
412
+ "grad_norm": 1.2636664413259953,
413
+ "learning_rate": 9.881069077297724e-06,
414
+ "loss": 1.2061,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.3342776203966006,
419
+ "grad_norm": 1.4260407982081962,
420
+ "learning_rate": 9.876082786106546e-06,
421
+ "loss": 1.1998,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.33994334277620397,
426
+ "grad_norm": 1.95604739866899,
427
+ "learning_rate": 9.870995413367397e-06,
428
+ "loss": 1.2215,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.34560906515580736,
433
+ "grad_norm": 1.2316545141521473,
434
+ "learning_rate": 9.865807064541878e-06,
435
+ "loss": 1.1599,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.35127478753541075,
440
+ "grad_norm": 1.1178440688886253,
441
+ "learning_rate": 9.860517847184837e-06,
442
+ "loss": 1.1907,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.35694050991501414,
447
+ "grad_norm": 1.305376049095191,
448
+ "learning_rate": 9.855127870942131e-06,
449
+ "loss": 1.1474,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.3626062322946176,
454
+ "grad_norm": 1.0495122657744762,
455
+ "learning_rate": 9.849637247548356e-06,
456
+ "loss": 1.2424,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.36827195467422097,
461
+ "grad_norm": 1.141538926125254,
462
+ "learning_rate": 9.844046090824533e-06,
463
+ "loss": 1.1689,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.37393767705382436,
468
+ "grad_norm": 1.26961257521241,
469
+ "learning_rate": 9.83835451667574e-06,
470
+ "loss": 1.2106,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.37960339943342775,
475
+ "grad_norm": 1.081533609255719,
476
+ "learning_rate": 9.832562643088724e-06,
477
+ "loss": 1.1834,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.38526912181303113,
482
+ "grad_norm": 1.443083776392187,
483
+ "learning_rate": 9.826670590129442e-06,
484
+ "loss": 1.1505,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.3909348441926346,
489
+ "grad_norm": 1.135777382976375,
490
+ "learning_rate": 9.820678479940573e-06,
491
+ "loss": 1.1489,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.39660056657223797,
496
+ "grad_norm": 1.8779005247112062,
497
+ "learning_rate": 9.814586436738998e-06,
498
+ "loss": 1.1643,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.40226628895184136,
503
+ "grad_norm": 1.7980060811236744,
504
+ "learning_rate": 9.808394586813209e-06,
505
+ "loss": 1.1594,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.40793201133144474,
510
+ "grad_norm": 2.572405910372765,
511
+ "learning_rate": 9.802103058520704e-06,
512
+ "loss": 1.1854,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.41359773371104813,
517
+ "grad_norm": 2.0253448122778606,
518
+ "learning_rate": 9.795711982285317e-06,
519
+ "loss": 1.1826,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.4192634560906516,
524
+ "grad_norm": 6.483254642683073,
525
+ "learning_rate": 9.78922149059452e-06,
526
+ "loss": 1.1646,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.42492917847025496,
531
+ "grad_norm": 1.2964281102887218,
532
+ "learning_rate": 9.782631717996675e-06,
533
+ "loss": 1.2379,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.43059490084985835,
538
+ "grad_norm": 1.9517402996335103,
539
+ "learning_rate": 9.775942801098241e-06,
540
+ "loss": 1.164,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.43626062322946174,
545
+ "grad_norm": 3.064531007561859,
546
+ "learning_rate": 9.76915487856095e-06,
547
+ "loss": 1.1418,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.44192634560906513,
552
+ "grad_norm": 1.5009905490397355,
553
+ "learning_rate": 9.762268091098926e-06,
554
+ "loss": 1.1653,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.4475920679886686,
559
+ "grad_norm": 1.104518219439204,
560
+ "learning_rate": 9.755282581475769e-06,
561
+ "loss": 1.2025,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.45325779036827196,
566
+ "grad_norm": 7.807500502849419,
567
+ "learning_rate": 9.748198494501598e-06,
568
+ "loss": 1.148,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.45892351274787535,
573
+ "grad_norm": 6.196503908242147,
574
+ "learning_rate": 9.741015977030046e-06,
575
+ "loss": 1.1819,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.46458923512747874,
580
+ "grad_norm": 2.2714978855142736,
581
+ "learning_rate": 9.733735177955219e-06,
582
+ "loss": 1.1907,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.4702549575070821,
587
+ "grad_norm": 1.834743890260826,
588
+ "learning_rate": 9.72635624820861e-06,
589
+ "loss": 1.1381,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.47592067988668557,
594
+ "grad_norm": 1.28470626171519,
595
+ "learning_rate": 9.71887934075596e-06,
596
+ "loss": 1.2079,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.48158640226628896,
601
+ "grad_norm": 6.197048819949928,
602
+ "learning_rate": 9.711304610594104e-06,
603
+ "loss": 1.1272,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.48725212464589235,
608
+ "grad_norm": 3.412508821399008,
609
+ "learning_rate": 9.703632214747742e-06,
610
+ "loss": 1.2382,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.49291784702549574,
615
+ "grad_norm": 1.57336480270559,
616
+ "learning_rate": 9.695862312266195e-06,
617
+ "loss": 1.157,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.4985835694050991,
622
+ "grad_norm": 7.383065472181884,
623
+ "learning_rate": 9.687995064220102e-06,
624
+ "loss": 1.1684,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.5042492917847026,
629
+ "grad_norm": 7.508526165016783,
630
+ "learning_rate": 9.680030633698083e-06,
631
+ "loss": 1.155,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.509915014164306,
636
+ "grad_norm": 9.25317664016253,
637
+ "learning_rate": 9.671969185803357e-06,
638
+ "loss": 1.1452,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.5155807365439093,
643
+ "grad_norm": 2.2525643431971876,
644
+ "learning_rate": 9.66381088765032e-06,
645
+ "loss": 1.1505,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.5212464589235127,
650
+ "grad_norm": 1.4721293586733248,
651
+ "learning_rate": 9.65555590836108e-06,
652
+ "loss": 1.1812,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.5269121813031161,
657
+ "grad_norm": 2.6949100034582103,
658
+ "learning_rate": 9.647204419061957e-06,
659
+ "loss": 1.1739,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.5325779036827195,
664
+ "grad_norm": 2.027029228479332,
665
+ "learning_rate": 9.638756592879923e-06,
666
+ "loss": 1.1335,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.5382436260623229,
671
+ "grad_norm": 1.8382974162119243,
672
+ "learning_rate": 9.630212604939026e-06,
673
+ "loss": 1.1298,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.5439093484419264,
678
+ "grad_norm": 1.2086577711922202,
679
+ "learning_rate": 9.621572632356754e-06,
680
+ "loss": 1.167,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.5495750708215298,
685
+ "grad_norm": 1.2819489966676616,
686
+ "learning_rate": 9.61283685424036e-06,
687
+ "loss": 1.1151,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.5552407932011332,
692
+ "grad_norm": 1.6800709750196126,
693
+ "learning_rate": 9.604005451683154e-06,
694
+ "loss": 1.1945,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.5609065155807366,
699
+ "grad_norm": 1.3375384173734144,
700
+ "learning_rate": 9.59507860776075e-06,
701
+ "loss": 1.1621,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.56657223796034,
706
+ "grad_norm": 2.188062868326175,
707
+ "learning_rate": 9.586056507527266e-06,
708
+ "loss": 1.1555,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.5722379603399433,
713
+ "grad_norm": 1.3814102048227788,
714
+ "learning_rate": 9.57693933801149e-06,
715
+ "loss": 1.1733,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.5779036827195467,
720
+ "grad_norm": 1.8014483071872645,
721
+ "learning_rate": 9.567727288213005e-06,
722
+ "loss": 1.1964,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.5835694050991501,
727
+ "grad_norm": 1.1912746031738484,
728
+ "learning_rate": 9.558420549098269e-06,
729
+ "loss": 1.2144,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.5892351274787535,
734
+ "grad_norm": 3.034007485521762,
735
+ "learning_rate": 9.549019313596652e-06,
736
+ "loss": 1.1321,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.5949008498583569,
741
+ "grad_norm": 1.866729945439932,
742
+ "learning_rate": 9.539523776596446e-06,
743
+ "loss": 1.1539,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.6005665722379604,
748
+ "grad_norm": 1.5773392319922173,
749
+ "learning_rate": 9.529934134940819e-06,
750
+ "loss": 1.1373,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.6062322946175638,
755
+ "grad_norm": 1.6561757646401918,
756
+ "learning_rate": 9.520250587423733e-06,
757
+ "loss": 1.1788,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.6118980169971672,
762
+ "grad_norm": 1.2809743948171723,
763
+ "learning_rate": 9.510473334785828e-06,
764
+ "loss": 1.1509,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.6175637393767706,
769
+ "grad_norm": 3.3019220495325405,
770
+ "learning_rate": 9.500602579710256e-06,
771
+ "loss": 1.1879,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.623229461756374,
776
+ "grad_norm": 1.5241985081276304,
777
+ "learning_rate": 9.490638526818482e-06,
778
+ "loss": 1.1114,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.6288951841359773,
783
+ "grad_norm": 2.053104975498995,
784
+ "learning_rate": 9.480581382666041e-06,
785
+ "loss": 1.2417,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.6345609065155807,
790
+ "grad_norm": 1.450461775862418,
791
+ "learning_rate": 9.470431355738257e-06,
792
+ "loss": 1.0761,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.6402266288951841,
797
+ "grad_norm": 2.831772615909268,
798
+ "learning_rate": 9.460188656445921e-06,
799
+ "loss": 1.1684,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.6458923512747875,
804
+ "grad_norm": 1.5478096558601282,
805
+ "learning_rate": 9.449853497120928e-06,
806
+ "loss": 1.1695,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.6515580736543909,
811
+ "grad_norm": 1.6582616402814803,
812
+ "learning_rate": 9.439426092011877e-06,
813
+ "loss": 1.1099,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.6572237960339944,
818
+ "grad_norm": 1.0617767973732541,
819
+ "learning_rate": 9.428906657279629e-06,
820
+ "loss": 1.1584,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.6628895184135978,
825
+ "grad_norm": 1.6822664727814025,
826
+ "learning_rate": 9.418295410992821e-06,
827
+ "loss": 1.1527,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.6685552407932012,
832
+ "grad_norm": 1.1837357577931802,
833
+ "learning_rate": 9.407592573123359e-06,
834
+ "loss": 1.187,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.6742209631728046,
839
+ "grad_norm": 1.690006148754325,
840
+ "learning_rate": 9.396798365541841e-06,
841
+ "loss": 1.1023,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.6798866855524079,
846
+ "grad_norm": 1.2755747770023382,
847
+ "learning_rate": 9.385913012012972e-06,
848
+ "loss": 1.1779,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.6855524079320113,
853
+ "grad_norm": 1.0625930962823409,
854
+ "learning_rate": 9.374936738190913e-06,
855
+ "loss": 1.1586,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.6912181303116147,
860
+ "grad_norm": 1.4107647400186194,
861
+ "learning_rate": 9.363869771614615e-06,
862
+ "loss": 1.1227,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.6968838526912181,
867
+ "grad_norm": 1.4237393729227041,
868
+ "learning_rate": 9.35271234170309e-06,
869
+ "loss": 1.1526,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.7025495750708215,
874
+ "grad_norm": 1.239081728465614,
875
+ "learning_rate": 9.341464679750669e-06,
876
+ "loss": 1.1676,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.7082152974504249,
881
+ "grad_norm": 1.2250609811941313,
882
+ "learning_rate": 9.330127018922195e-06,
883
+ "loss": 1.1549,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.7138810198300283,
888
+ "grad_norm": 1.0079463118549998,
889
+ "learning_rate": 9.318699594248192e-06,
890
+ "loss": 1.0825,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.7195467422096318,
895
+ "grad_norm": 1.1822482076914111,
896
+ "learning_rate": 9.307182642620001e-06,
897
+ "loss": 1.1699,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.7252124645892352,
902
+ "grad_norm": 1.192585782341377,
903
+ "learning_rate": 9.295576402784858e-06,
904
+ "loss": 1.1864,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.7308781869688386,
909
+ "grad_norm": 1.1793876225801334,
910
+ "learning_rate": 9.283881115340957e-06,
911
+ "loss": 1.1592,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.7365439093484419,
916
+ "grad_norm": 1.4328581990598621,
917
+ "learning_rate": 9.272097022732444e-06,
918
+ "loss": 1.1264,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.7422096317280453,
923
+ "grad_norm": 1.4063460821599099,
924
+ "learning_rate": 9.260224369244414e-06,
925
+ "loss": 1.1582,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.7478753541076487,
930
+ "grad_norm": 1.3928551806399836,
931
+ "learning_rate": 9.248263400997826e-06,
932
+ "loss": 1.1036,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.7535410764872521,
937
+ "grad_norm": 1.0443812793505807,
938
+ "learning_rate": 9.236214365944418e-06,
939
+ "loss": 1.1809,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.7592067988668555,
944
+ "grad_norm": 7.4865021772015234,
945
+ "learning_rate": 9.224077513861556e-06,
946
+ "loss": 1.1432,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.7648725212464589,
951
+ "grad_norm": 4.687727924279942,
952
+ "learning_rate": 9.211853096347059e-06,
953
+ "loss": 1.1436,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.7705382436260623,
958
+ "grad_norm": 1.7813513129483227,
959
+ "learning_rate": 9.199541366813984e-06,
960
+ "loss": 1.2003,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.7762039660056658,
965
+ "grad_norm": 1.1574866856711652,
966
+ "learning_rate": 9.18714258048537e-06,
967
+ "loss": 1.0949,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.7818696883852692,
972
+ "grad_norm": 1.5923532949818175,
973
+ "learning_rate": 9.174656994388957e-06,
974
+ "loss": 1.1312,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.7875354107648725,
979
+ "grad_norm": 1.4090405021331738,
980
+ "learning_rate": 9.16208486735184e-06,
981
+ "loss": 1.1371,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.7932011331444759,
986
+ "grad_norm": 1.1066958591085674,
987
+ "learning_rate": 9.149426459995127e-06,
988
+ "loss": 1.1892,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.7988668555240793,
993
+ "grad_norm": 1.3806489023187403,
994
+ "learning_rate": 9.136682034728508e-06,
995
+ "loss": 1.1203,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.8045325779036827,
1000
+ "grad_norm": 1.4492241915768966,
1001
+ "learning_rate": 9.123851855744842e-06,
1002
+ "loss": 1.1606,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.8101983002832861,
1007
+ "grad_norm": 1.2880006738591805,
1008
+ "learning_rate": 9.110936189014668e-06,
1009
+ "loss": 1.1363,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.8158640226628895,
1014
+ "grad_norm": 1.4252322295071467,
1015
+ "learning_rate": 9.097935302280682e-06,
1016
+ "loss": 1.1299,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.8215297450424929,
1021
+ "grad_norm": 1.1051239821774794,
1022
+ "learning_rate": 9.08484946505221e-06,
1023
+ "loss": 1.1855,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.8271954674220963,
1028
+ "grad_norm": 1.1582328438262173,
1029
+ "learning_rate": 9.0716789485996e-06,
1030
+ "loss": 1.1173,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.8328611898016998,
1035
+ "grad_norm": 1.1514645858243073,
1036
+ "learning_rate": 9.058424025948609e-06,
1037
+ "loss": 1.0758,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.8385269121813032,
1042
+ "grad_norm": 1.9099023373890425,
1043
+ "learning_rate": 9.045084971874738e-06,
1044
+ "loss": 1.1502,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.8441926345609065,
1049
+ "grad_norm": 1.4883203974156398,
1050
+ "learning_rate": 9.03166206289754e-06,
1051
+ "loss": 1.1244,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.8498583569405099,
1056
+ "grad_norm": 1.2439793782301596,
1057
+ "learning_rate": 9.018155577274891e-06,
1058
+ "loss": 1.1188,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.8555240793201133,
1063
+ "grad_norm": 0.9842320904106822,
1064
+ "learning_rate": 9.004565794997209e-06,
1065
+ "loss": 1.0915,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.8611898016997167,
1070
+ "grad_norm": 1.1256206443075392,
1071
+ "learning_rate": 8.990892997781661e-06,
1072
+ "loss": 1.1418,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.8668555240793201,
1077
+ "grad_norm": 1.4668868690697237,
1078
+ "learning_rate": 8.977137469066321e-06,
1079
+ "loss": 1.1439,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.8725212464589235,
1084
+ "grad_norm": 1.0357963651071045,
1085
+ "learning_rate": 8.963299494004292e-06,
1086
+ "loss": 1.1489,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.8781869688385269,
1091
+ "grad_norm": 1.2279259538562963,
1092
+ "learning_rate": 8.949379359457795e-06,
1093
+ "loss": 1.148,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.8838526912181303,
1098
+ "grad_norm": 1.279164021341607,
1099
+ "learning_rate": 8.935377353992222e-06,
1100
+ "loss": 1.1291,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.8895184135977338,
1105
+ "grad_norm": 1.0117872914387078,
1106
+ "learning_rate": 8.921293767870157e-06,
1107
+ "loss": 1.1029,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.8951841359773371,
1112
+ "grad_norm": 1.0385739682984056,
1113
+ "learning_rate": 8.907128893045359e-06,
1114
+ "loss": 1.1378,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.9008498583569405,
1119
+ "grad_norm": 0.9862798736503189,
1120
+ "learning_rate": 8.892883023156703e-06,
1121
+ "loss": 1.1247,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.9065155807365439,
1126
+ "grad_norm": 1.0052226052209343,
1127
+ "learning_rate": 8.8785564535221e-06,
1128
+ "loss": 1.1396,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.9121813031161473,
1133
+ "grad_norm": 1.0025191403649947,
1134
+ "learning_rate": 8.86414948113237e-06,
1135
+ "loss": 1.1072,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.9178470254957507,
1140
+ "grad_norm": 1.0190829556170014,
1141
+ "learning_rate": 8.849662404645097e-06,
1142
+ "loss": 1.0692,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.9235127478753541,
1147
+ "grad_norm": 1.065083676666634,
1148
+ "learning_rate": 8.835095524378413e-06,
1149
+ "loss": 1.0839,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.9291784702549575,
1154
+ "grad_norm": 2.75250829153078,
1155
+ "learning_rate": 8.820449142304805e-06,
1156
+ "loss": 1.0976,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.9348441926345609,
1161
+ "grad_norm": 1.11457337735503,
1162
+ "learning_rate": 8.805723562044825e-06,
1163
+ "loss": 1.1383,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.9405099150141643,
1168
+ "grad_norm": 1.223823647150824,
1169
+ "learning_rate": 8.790919088860815e-06,
1170
+ "loss": 1.1331,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.9461756373937678,
1175
+ "grad_norm": 0.9688685956053592,
1176
+ "learning_rate": 8.776036029650573e-06,
1177
+ "loss": 1.1168,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.9518413597733711,
1182
+ "grad_norm": 1.0407006447195224,
1183
+ "learning_rate": 8.76107469294099e-06,
1184
+ "loss": 1.1353,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.9575070821529745,
1189
+ "grad_norm": 1.477166466547593,
1190
+ "learning_rate": 8.746035388881655e-06,
1191
+ "loss": 1.146,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.9631728045325779,
1196
+ "grad_norm": 1.1923873158431406,
1197
+ "learning_rate": 8.730918429238429e-06,
1198
+ "loss": 1.1513,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.9688385269121813,
1203
+ "grad_norm": 1.2104600261128056,
1204
+ "learning_rate": 8.715724127386971e-06,
1205
+ "loss": 1.0846,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.9745042492917847,
1210
+ "grad_norm": 1.026649259168152,
1211
+ "learning_rate": 8.70045279830626e-06,
1212
+ "loss": 1.0987,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.9801699716713881,
1217
+ "grad_norm": 1.1324270741577538,
1218
+ "learning_rate": 8.685104758572047e-06,
1219
+ "loss": 1.1884,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.9858356940509915,
1224
+ "grad_norm": 1.1264630127825281,
1225
+ "learning_rate": 8.669680326350303e-06,
1226
+ "loss": 1.1505,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.9915014164305949,
1231
+ "grad_norm": 1.0463584307162723,
1232
+ "learning_rate": 8.65417982139062e-06,
1233
+ "loss": 1.1194,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.9971671388101983,
1238
+ "grad_norm": 1.1195551791308074,
1239
+ "learning_rate": 8.638603565019588e-06,
1240
+ "loss": 1.1228,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.0113636363636365,
1245
+ "grad_norm": 1.7869848977800533,
1246
+ "learning_rate": 8.622951880134122e-06,
1247
+ "loss": 1.0017,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.0170454545454546,
1252
+ "grad_norm": 1.8967548711721598,
1253
+ "learning_rate": 8.60722509119478e-06,
1254
+ "loss": 1.0646,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.0227272727272727,
1259
+ "grad_norm": 2.7719840532515856,
1260
+ "learning_rate": 8.59142352421903e-06,
1261
+ "loss": 0.9887,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.0284090909090908,
1266
+ "grad_norm": 1.8480101734746917,
1267
+ "learning_rate": 8.575547506774498e-06,
1268
+ "loss": 1.0262,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.0340909090909092,
1273
+ "grad_norm": 1.4999444026158775,
1274
+ "learning_rate": 8.559597367972168e-06,
1275
+ "loss": 0.9829,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.0397727272727273,
1280
+ "grad_norm": 1.38809085421665,
1281
+ "learning_rate": 8.543573438459573e-06,
1282
+ "loss": 1.0144,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.0454545454545454,
1287
+ "grad_norm": 1.2624399470463477,
1288
+ "learning_rate": 8.527476050413922e-06,
1289
+ "loss": 0.9867,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.0511363636363635,
1294
+ "grad_norm": 7.342610894443344,
1295
+ "learning_rate": 8.511305537535238e-06,
1296
+ "loss": 0.9866,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.0568181818181819,
1301
+ "grad_norm": 8.705248219538825,
1302
+ "learning_rate": 8.49506223503941e-06,
1303
+ "loss": 0.9728,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.0625,
1308
+ "grad_norm": 2.0263962989089936,
1309
+ "learning_rate": 8.47874647965128e-06,
1310
+ "loss": 0.9965,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.0681818181818181,
1315
+ "grad_norm": 2.13351438929688,
1316
+ "learning_rate": 8.462358609597629e-06,
1317
+ "loss": 1.0024,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.0738636363636365,
1322
+ "grad_norm": 2.0005753741817736,
1323
+ "learning_rate": 8.445898964600188e-06,
1324
+ "loss": 0.993,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.0795454545454546,
1329
+ "grad_norm": 2.084050032615475,
1330
+ "learning_rate": 8.429367885868582e-06,
1331
+ "loss": 0.9958,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.0852272727272727,
1336
+ "grad_norm": 1.7516330808766072,
1337
+ "learning_rate": 8.412765716093273e-06,
1338
+ "loss": 1.0554,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.0909090909090908,
1343
+ "grad_norm": 1.2861019981619892,
1344
+ "learning_rate": 8.396092799438429e-06,
1345
+ "loss": 1.013,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.0965909090909092,
1350
+ "grad_norm": 1.4381225932886976,
1351
+ "learning_rate": 8.379349481534822e-06,
1352
+ "loss": 0.9797,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.1022727272727273,
1357
+ "grad_norm": 1.8623594079891328,
1358
+ "learning_rate": 8.362536109472637e-06,
1359
+ "loss": 1.0018,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.1079545454545454,
1364
+ "grad_norm": 1.5115381108478676,
1365
+ "learning_rate": 8.345653031794292e-06,
1366
+ "loss": 1.016,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.1136363636363635,
1371
+ "grad_norm": 1.193026650866575,
1372
+ "learning_rate": 8.328700598487203e-06,
1373
+ "loss": 0.9977,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.1193181818181819,
1378
+ "grad_norm": 1.080840404605079,
1379
+ "learning_rate": 8.31167916097654e-06,
1380
+ "loss": 0.9982,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.125,
1385
+ "grad_norm": 1.244418182887263,
1386
+ "learning_rate": 8.294589072117925e-06,
1387
+ "loss": 1.0206,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.1306818181818181,
1392
+ "grad_norm": 1.054116651622593,
1393
+ "learning_rate": 8.277430686190137e-06,
1394
+ "loss": 0.9932,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.1363636363636362,
1399
+ "grad_norm": 1.6708346020909142,
1400
+ "learning_rate": 8.260204358887753e-06,
1401
+ "loss": 0.9867,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.1420454545454546,
1406
+ "grad_norm": 1.764380671950815,
1407
+ "learning_rate": 8.24291044731378e-06,
1408
+ "loss": 1.0255,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.1477272727272727,
1413
+ "grad_norm": 1.4610852940462264,
1414
+ "learning_rate": 8.225549309972256e-06,
1415
+ "loss": 1.0016,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.1534090909090908,
1420
+ "grad_norm": 1.3465974910520928,
1421
+ "learning_rate": 8.208121306760806e-06,
1422
+ "loss": 0.9942,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.1590909090909092,
1427
+ "grad_norm": 3.407109598217383,
1428
+ "learning_rate": 8.190626798963198e-06,
1429
+ "loss": 0.9595,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.1647727272727273,
1434
+ "grad_norm": 3.4569449045424228,
1435
+ "learning_rate": 8.173066149241839e-06,
1436
+ "loss": 0.9679,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.1704545454545454,
1441
+ "grad_norm": 3.5722389574790623,
1442
+ "learning_rate": 8.155439721630265e-06,
1443
+ "loss": 1.0112,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.1761363636363638,
1448
+ "grad_norm": 1.7368368324960894,
1449
+ "learning_rate": 8.137747881525593e-06,
1450
+ "loss": 0.9658,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.1818181818181819,
1455
+ "grad_norm": 3.5425491105943365,
1456
+ "learning_rate": 8.119990995680942e-06,
1457
+ "loss": 1.0097,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.1875,
1462
+ "grad_norm": 4.277519958399436,
1463
+ "learning_rate": 8.102169432197842e-06,
1464
+ "loss": 1.0525,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.1931818181818181,
1469
+ "grad_norm": 1.5253776819790414,
1470
+ "learning_rate": 8.084283560518584e-06,
1471
+ "loss": 1.0257,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.1988636363636362,
1476
+ "grad_norm": 2.393941181872517,
1477
+ "learning_rate": 8.066333751418582e-06,
1478
+ "loss": 0.9519,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.2045454545454546,
1483
+ "grad_norm": 1.8648154402777406,
1484
+ "learning_rate": 8.048320376998675e-06,
1485
+ "loss": 1.0314,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.2102272727272727,
1490
+ "grad_norm": 1.1560926115738988,
1491
+ "learning_rate": 8.030243810677408e-06,
1492
+ "loss": 1.0079,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.2159090909090908,
1497
+ "grad_norm": 1.9861708806007312,
1498
+ "learning_rate": 8.012104427183313e-06,
1499
+ "loss": 0.9712,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.2215909090909092,
1504
+ "grad_norm": 1.6176603802315128,
1505
+ "learning_rate": 7.993902602547113e-06,
1506
+ "loss": 1.0604,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.2272727272727273,
1511
+ "grad_norm": 1.206136483858858,
1512
+ "learning_rate": 7.97563871409395e-06,
1513
+ "loss": 0.9968,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.2329545454545454,
1518
+ "grad_norm": 1.0849650106469113,
1519
+ "learning_rate": 7.957313140435545e-06,
1520
+ "loss": 1.0013,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.2386363636363638,
1525
+ "grad_norm": 1.2530592258144626,
1526
+ "learning_rate": 7.938926261462366e-06,
1527
+ "loss": 1.0392,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.2443181818181819,
1532
+ "grad_norm": 1.4528013728950318,
1533
+ "learning_rate": 7.920478458335738e-06,
1534
+ "loss": 0.945,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.25,
1539
+ "grad_norm": 1.1182010469150763,
1540
+ "learning_rate": 7.901970113479956e-06,
1541
+ "loss": 0.9755,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.2556818181818181,
1546
+ "grad_norm": 1.274158214216111,
1547
+ "learning_rate": 7.883401610574338e-06,
1548
+ "loss": 0.9827,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.2613636363636362,
1553
+ "grad_norm": 1.4460645426911298,
1554
+ "learning_rate": 7.86477333454529e-06,
1555
+ "loss": 1.0233,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.2670454545454546,
1560
+ "grad_norm": 1.004043430975716,
1561
+ "learning_rate": 7.84608567155832e-06,
1562
+ "loss": 0.988,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.2727272727272727,
1567
+ "grad_norm": 1.1277928768546195,
1568
+ "learning_rate": 7.82733900901003e-06,
1569
+ "loss": 1.0092,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.2784090909090908,
1574
+ "grad_norm": 1.30174465678015,
1575
+ "learning_rate": 7.808533735520087e-06,
1576
+ "loss": 1.0023,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.2840909090909092,
1581
+ "grad_norm": 1.155122280361969,
1582
+ "learning_rate": 7.789670240923169e-06,
1583
+ "loss": 0.9938,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.2897727272727273,
1588
+ "grad_norm": 1.1535920929699675,
1589
+ "learning_rate": 7.770748916260875e-06,
1590
+ "loss": 1.0215,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.2954545454545454,
1595
+ "grad_norm": 1.7495637702269113,
1596
+ "learning_rate": 7.751770153773635e-06,
1597
+ "loss": 0.9776,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.3011363636363638,
1602
+ "grad_norm": 1.2776922576240242,
1603
+ "learning_rate": 7.732734346892561e-06,
1604
+ "loss": 0.9716,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.3068181818181819,
1609
+ "grad_norm": 1.3172404492877499,
1610
+ "learning_rate": 7.71364189023131e-06,
1611
+ "loss": 0.9928,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.3125,
1616
+ "grad_norm": 1.0320305867343866,
1617
+ "learning_rate": 7.69449317957788e-06,
1618
+ "loss": 0.9544,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.3181818181818181,
1623
+ "grad_norm": 0.9917633137560159,
1624
+ "learning_rate": 7.675288611886423e-06,
1625
+ "loss": 0.9762,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.3238636363636362,
1630
+ "grad_norm": 0.8750459875550817,
1631
+ "learning_rate": 7.656028585269017e-06,
1632
+ "loss": 0.9649,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.3295454545454546,
1637
+ "grad_norm": 1.0172245413205394,
1638
+ "learning_rate": 7.636713498987405e-06,
1639
+ "loss": 0.9915,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.3352272727272727,
1644
+ "grad_norm": 1.1026610095660114,
1645
+ "learning_rate": 7.617343753444714e-06,
1646
+ "loss": 0.9167,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 1.3409090909090908,
1651
+ "grad_norm": 0.9838674494365538,
1652
+ "learning_rate": 7.597919750177168e-06,
1653
+ "loss": 0.9978,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 1.3465909090909092,
1658
+ "grad_norm": 0.9922575875228704,
1659
+ "learning_rate": 7.5784418918457605e-06,
1660
+ "loss": 1.0052,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 1.3522727272727273,
1665
+ "grad_norm": 0.9776223871792626,
1666
+ "learning_rate": 7.5589105822278944e-06,
1667
+ "loss": 1.0096,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 1.3579545454545454,
1672
+ "grad_norm": 1.4258305295766374,
1673
+ "learning_rate": 7.539326226209032e-06,
1674
+ "loss": 1.0458,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 1.3636363636363638,
1679
+ "grad_norm": 1.0015058561164187,
1680
+ "learning_rate": 7.519689229774282e-06,
1681
+ "loss": 1.0248,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 1.3693181818181819,
1686
+ "grad_norm": 1.0082049852889665,
1687
+ "learning_rate": 7.500000000000001e-06,
1688
+ "loss": 0.9766,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 1.375,
1693
+ "grad_norm": 0.904307095617801,
1694
+ "learning_rate": 7.4802589450453415e-06,
1695
+ "loss": 1.029,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 1.3806818181818181,
1700
+ "grad_norm": 0.9709949750288794,
1701
+ "learning_rate": 7.4604664741437975e-06,
1702
+ "loss": 0.9803,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 1.3863636363636362,
1707
+ "grad_norm": 0.9137049440782995,
1708
+ "learning_rate": 7.440622997594718e-06,
1709
+ "loss": 0.9838,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 1.3920454545454546,
1714
+ "grad_norm": 0.955522616879317,
1715
+ "learning_rate": 7.420728926754803e-06,
1716
+ "loss": 0.9841,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 1.3977272727272727,
1721
+ "grad_norm": 0.8924545271105511,
1722
+ "learning_rate": 7.400784674029579e-06,
1723
+ "loss": 0.9747,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 1.4034090909090908,
1728
+ "grad_norm": 0.9275527221675671,
1729
+ "learning_rate": 7.380790652864842e-06,
1730
+ "loss": 1.0203,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 1.4090909090909092,
1735
+ "grad_norm": 0.9480980891308645,
1736
+ "learning_rate": 7.360747277738094e-06,
1737
+ "loss": 0.9923,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 1.4147727272727273,
1742
+ "grad_norm": 0.8427849664059336,
1743
+ "learning_rate": 7.340654964149947e-06,
1744
+ "loss": 0.9806,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 1.4204545454545454,
1749
+ "grad_norm": 0.9076953250803492,
1750
+ "learning_rate": 7.320514128615511e-06,
1751
+ "loss": 0.9982,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 1.4261363636363638,
1756
+ "grad_norm": 1.0540250139165377,
1757
+ "learning_rate": 7.300325188655762e-06,
1758
+ "loss": 0.9902,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 1.4318181818181819,
1763
+ "grad_norm": 0.9954503040475974,
1764
+ "learning_rate": 7.280088562788879e-06,
1765
+ "loss": 0.9809,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 1.4375,
1770
+ "grad_norm": 0.9967393104089797,
1771
+ "learning_rate": 7.259804670521579e-06,
1772
+ "loss": 1.0,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 1.4431818181818181,
1777
+ "grad_norm": 0.9891797210154472,
1778
+ "learning_rate": 7.2394739323404105e-06,
1779
+ "loss": 1.0005,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 1.4488636363636362,
1784
+ "grad_norm": 1.1178308003268749,
1785
+ "learning_rate": 7.219096769703045e-06,
1786
+ "loss": 0.9868,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 1.4545454545454546,
1791
+ "grad_norm": 1.0000809761609377,
1792
+ "learning_rate": 7.198673605029529e-06,
1793
+ "loss": 0.9648,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 1.4602272727272727,
1798
+ "grad_norm": 0.9396228245111997,
1799
+ "learning_rate": 7.178204861693546e-06,
1800
+ "loss": 1.0009,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 1.4659090909090908,
1805
+ "grad_norm": 1.055214770002229,
1806
+ "learning_rate": 7.15769096401362e-06,
1807
+ "loss": 0.9478,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 1.4715909090909092,
1812
+ "grad_norm": 1.0750160280057304,
1813
+ "learning_rate": 7.137132337244329e-06,
1814
+ "loss": 0.958,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 1.4772727272727273,
1819
+ "grad_norm": 1.0648150711699151,
1820
+ "learning_rate": 7.116529407567489e-06,
1821
+ "loss": 0.9828,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 1.4829545454545454,
1826
+ "grad_norm": 1.1192077304577122,
1827
+ "learning_rate": 7.095882602083321e-06,
1828
+ "loss": 0.9707,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 1.4886363636363638,
1833
+ "grad_norm": 1.1092309283046025,
1834
+ "learning_rate": 7.075192348801591e-06,
1835
+ "loss": 0.9842,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 1.4943181818181819,
1840
+ "grad_norm": 1.0585087928308756,
1841
+ "learning_rate": 7.054459076632742e-06,
1842
+ "loss": 1.0636,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 1.5,
1847
+ "grad_norm": 1.041991357364786,
1848
+ "learning_rate": 7.033683215379002e-06,
1849
+ "loss": 0.9753,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 1.5056818181818183,
1854
+ "grad_norm": 0.9720414152268064,
1855
+ "learning_rate": 7.012865195725473e-06,
1856
+ "loss": 0.9916,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 1.5113636363636362,
1861
+ "grad_norm": 1.1265716150738212,
1862
+ "learning_rate": 6.9920054492312086e-06,
1863
+ "loss": 1.0678,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 1.5170454545454546,
1868
+ "grad_norm": 1.0711823881169122,
1869
+ "learning_rate": 6.971104408320253e-06,
1870
+ "loss": 0.9776,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 1.5227272727272727,
1875
+ "grad_norm": 1.1256078273217827,
1876
+ "learning_rate": 6.950162506272697e-06,
1877
+ "loss": 0.9904,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 1.5284090909090908,
1882
+ "grad_norm": 0.9811471547098307,
1883
+ "learning_rate": 6.9291801772156775e-06,
1884
+ "loss": 0.987,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 1.5340909090909092,
1889
+ "grad_norm": 1.205853115403329,
1890
+ "learning_rate": 6.9081578561143924e-06,
1891
+ "loss": 0.9352,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 1.5397727272727273,
1896
+ "grad_norm": 0.9564252171879485,
1897
+ "learning_rate": 6.887095978763072e-06,
1898
+ "loss": 1.0099,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 1.5454545454545454,
1903
+ "grad_norm": 0.9739638011221726,
1904
+ "learning_rate": 6.865994981775958e-06,
1905
+ "loss": 0.9186,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 1.5511363636363638,
1910
+ "grad_norm": 1.3776679228140132,
1911
+ "learning_rate": 6.844855302578236e-06,
1912
+ "loss": 1.0077,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 1.5568181818181817,
1917
+ "grad_norm": 1.0125445825014543,
1918
+ "learning_rate": 6.823677379396984e-06,
1919
+ "loss": 0.9993,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 1.5625,
1924
+ "grad_norm": 0.9892499359106408,
1925
+ "learning_rate": 6.802461651252073e-06,
1926
+ "loss": 0.9571,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 1.5681818181818183,
1931
+ "grad_norm": 1.0831674501266864,
1932
+ "learning_rate": 6.781208557947085e-06,
1933
+ "loss": 1.0061,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 1.5738636363636362,
1938
+ "grad_norm": 0.9356751500366064,
1939
+ "learning_rate": 6.759918540060173e-06,
1940
+ "loss": 0.979,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 1.5795454545454546,
1945
+ "grad_norm": 1.0557115003350075,
1946
+ "learning_rate": 6.738592038934946e-06,
1947
+ "loss": 0.9961,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 1.5852272727272727,
1952
+ "grad_norm": 1.2599637679261655,
1953
+ "learning_rate": 6.717229496671307e-06,
1954
+ "loss": 0.9753,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 1.5909090909090908,
1959
+ "grad_norm": 1.0507134323091725,
1960
+ "learning_rate": 6.6958313561163046e-06,
1961
+ "loss": 0.9425,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 1.5965909090909092,
1966
+ "grad_norm": 0.9631905231298211,
1967
+ "learning_rate": 6.674398060854931e-06,
1968
+ "loss": 1.055,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 1.6022727272727273,
1973
+ "grad_norm": 0.9131560827453628,
1974
+ "learning_rate": 6.652930055200948e-06,
1975
+ "loss": 0.9929,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 1.6079545454545454,
1980
+ "grad_norm": 0.9138134537225251,
1981
+ "learning_rate": 6.631427784187658e-06,
1982
+ "loss": 0.952,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 1.6136363636363638,
1987
+ "grad_norm": 0.9436608998471452,
1988
+ "learning_rate": 6.609891693558692e-06,
1989
+ "loss": 1.0371,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 1.6193181818181817,
1994
+ "grad_norm": 1.077730549555469,
1995
+ "learning_rate": 6.588322229758764e-06,
1996
+ "loss": 1.0231,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 1.625,
2001
+ "grad_norm": 0.8542525239275349,
2002
+ "learning_rate": 6.566719839924412e-06,
2003
+ "loss": 0.9908,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 1.6306818181818183,
2008
+ "grad_norm": 0.9390889918397101,
2009
+ "learning_rate": 6.545084971874738e-06,
2010
+ "loss": 0.9965,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 1.6363636363636362,
2015
+ "grad_norm": 1.3403721698995363,
2016
+ "learning_rate": 6.523418074102117e-06,
2017
+ "loss": 0.9865,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 1.6420454545454546,
2022
+ "grad_norm": 0.9787534693003979,
2023
+ "learning_rate": 6.501719595762903e-06,
2024
+ "loss": 0.995,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 1.6477272727272727,
2029
+ "grad_norm": 0.8866152592349634,
2030
+ "learning_rate": 6.479989986668118e-06,
2031
+ "loss": 0.9846,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 1.6534090909090908,
2036
+ "grad_norm": 0.8915138418235523,
2037
+ "learning_rate": 6.458229697274125e-06,
2038
+ "loss": 1.0373,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 1.6590909090909092,
2043
+ "grad_norm": 0.9633872591030624,
2044
+ "learning_rate": 6.436439178673296e-06,
2045
+ "loss": 0.9864,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 1.6647727272727273,
2050
+ "grad_norm": 0.9836814915125117,
2051
+ "learning_rate": 6.41461888258465e-06,
2052
+ "loss": 0.9555,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 1.6704545454545454,
2057
+ "grad_norm": 0.9708188501717393,
2058
+ "learning_rate": 6.392769261344502e-06,
2059
+ "loss": 0.9448,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 1.6761363636363638,
2064
+ "grad_norm": 0.8777800692748914,
2065
+ "learning_rate": 6.370890767897078e-06,
2066
+ "loss": 1.0044,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 1.6818181818181817,
2071
+ "grad_norm": 1.0244121250661828,
2072
+ "learning_rate": 6.348983855785122e-06,
2073
+ "loss": 0.9802,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 1.6875,
2078
+ "grad_norm": 1.0027302545771752,
2079
+ "learning_rate": 6.3270489791405055e-06,
2080
+ "loss": 0.9562,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 1.6931818181818183,
2085
+ "grad_norm": 1.7051161806513946,
2086
+ "learning_rate": 6.305086592674802e-06,
2087
+ "loss": 0.9892,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 1.6988636363636362,
2092
+ "grad_norm": 1.12580729447642,
2093
+ "learning_rate": 6.283097151669869e-06,
2094
+ "loss": 0.9821,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 1.7045454545454546,
2099
+ "grad_norm": 0.9839470381373491,
2100
+ "learning_rate": 6.261081111968403e-06,
2101
+ "loss": 0.9916,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 1.7102272727272727,
2106
+ "grad_norm": 1.0613072641616672,
2107
+ "learning_rate": 6.2390389299645e-06,
2108
+ "loss": 0.9783,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 1.7159090909090908,
2113
+ "grad_norm": 0.9792881716793711,
2114
+ "learning_rate": 6.216971062594179e-06,
2115
+ "loss": 1.0007,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 1.7215909090909092,
2120
+ "grad_norm": 1.1054016241161089,
2121
+ "learning_rate": 6.1948779673259256e-06,
2122
+ "loss": 1.0079,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 1.7272727272727273,
2127
+ "grad_norm": 1.2013950643084332,
2128
+ "learning_rate": 6.172760102151195e-06,
2129
+ "loss": 1.0137,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 1.7329545454545454,
2134
+ "grad_norm": 1.0486842583129228,
2135
+ "learning_rate": 6.1506179255749335e-06,
2136
+ "loss": 0.9611,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 1.7386363636363638,
2141
+ "grad_norm": 0.9879084512426718,
2142
+ "learning_rate": 6.128451896606054e-06,
2143
+ "loss": 0.987,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 1.7443181818181817,
2148
+ "grad_norm": 0.8702171126549813,
2149
+ "learning_rate": 6.106262474747939e-06,
2150
+ "loss": 1.0354,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 1.75,
2155
+ "grad_norm": 0.9479994120475482,
2156
+ "learning_rate": 6.084050119988905e-06,
2157
+ "loss": 0.9687,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 1.7556818181818183,
2162
+ "grad_norm": 0.841865035975423,
2163
+ "learning_rate": 6.061815292792666e-06,
2164
+ "loss": 0.9692,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 1.7613636363636362,
2169
+ "grad_norm": 1.1986107322286728,
2170
+ "learning_rate": 6.039558454088796e-06,
2171
+ "loss": 0.9869,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 1.7670454545454546,
2176
+ "grad_norm": 0.9606223972077408,
2177
+ "learning_rate": 6.0172800652631706e-06,
2178
+ "loss": 1.0164,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 1.7727272727272727,
2183
+ "grad_norm": 0.8967627253652938,
2184
+ "learning_rate": 5.994980588148391e-06,
2185
+ "loss": 1.043,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 1.7784090909090908,
2190
+ "grad_norm": 0.7941576266062421,
2191
+ "learning_rate": 5.972660485014231e-06,
2192
+ "loss": 0.9485,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 1.7840909090909092,
2197
+ "grad_norm": 1.0936763123716517,
2198
+ "learning_rate": 5.950320218558037e-06,
2199
+ "loss": 0.9886,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 1.7897727272727273,
2204
+ "grad_norm": 1.0795280588915757,
2205
+ "learning_rate": 5.927960251895146e-06,
2206
+ "loss": 1.0174,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 1.7954545454545454,
2211
+ "grad_norm": 0.8880700856278866,
2212
+ "learning_rate": 5.905581048549279e-06,
2213
+ "loss": 0.9825,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 1.8011363636363638,
2218
+ "grad_norm": 0.8742464433982793,
2219
+ "learning_rate": 5.883183072442938e-06,
2220
+ "loss": 0.9392,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 1.8068181818181817,
2225
+ "grad_norm": 0.9015845437433646,
2226
+ "learning_rate": 5.860766787887781e-06,
2227
+ "loss": 0.9507,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 1.8125,
2232
+ "grad_norm": 0.8777902350206828,
2233
+ "learning_rate": 5.838332659575005e-06,
2234
+ "loss": 1.0214,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 1.8181818181818183,
2239
+ "grad_norm": 0.9432419707404883,
2240
+ "learning_rate": 5.815881152565712e-06,
2241
+ "loss": 0.9913,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 1.8238636363636362,
2246
+ "grad_norm": 1.554034736388586,
2247
+ "learning_rate": 5.793412732281258e-06,
2248
+ "loss": 0.9762,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 1.8295454545454546,
2253
+ "grad_norm": 0.9581038943273897,
2254
+ "learning_rate": 5.7709278644936164e-06,
2255
+ "loss": 0.9848,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 1.8352272727272727,
2260
+ "grad_norm": 0.8898637306384684,
2261
+ "learning_rate": 5.7484270153157215e-06,
2262
+ "loss": 0.9396,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 1.8409090909090908,
2267
+ "grad_norm": 1.0203919143753812,
2268
+ "learning_rate": 5.725910651191798e-06,
2269
+ "loss": 1.0037,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 1.8465909090909092,
2274
+ "grad_norm": 0.8907537657379099,
2275
+ "learning_rate": 5.703379238887703e-06,
2276
+ "loss": 0.9609,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 1.8522727272727273,
2281
+ "grad_norm": 1.114214216754724,
2282
+ "learning_rate": 5.680833245481234e-06,
2283
+ "loss": 0.9412,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 1.8579545454545454,
2288
+ "grad_norm": 1.0249614863719094,
2289
+ "learning_rate": 5.6582731383524625e-06,
2290
+ "loss": 1.0452,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 1.8636363636363638,
2295
+ "grad_norm": 0.9715196988270898,
2296
+ "learning_rate": 5.63569938517404e-06,
2297
+ "loss": 1.0453,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 1.8693181818181817,
2302
+ "grad_norm": 1.1613903786334339,
2303
+ "learning_rate": 5.613112453901493e-06,
2304
+ "loss": 0.9735,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 1.875,
2309
+ "grad_norm": 1.059608988677026,
2310
+ "learning_rate": 5.590512812763541e-06,
2311
+ "loss": 0.9618,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 1.8806818181818183,
2316
+ "grad_norm": 1.0952964220643884,
2317
+ "learning_rate": 5.567900930252375e-06,
2318
+ "loss": 0.9793,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 1.8863636363636362,
2323
+ "grad_norm": 1.014146750998599,
2324
+ "learning_rate": 5.5452772751139496e-06,
2325
+ "loss": 0.9863,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 1.8920454545454546,
2330
+ "grad_norm": 0.9663339556094782,
2331
+ "learning_rate": 5.522642316338268e-06,
2332
+ "loss": 1.0089,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 1.8977272727272727,
2337
+ "grad_norm": 0.9872369642699137,
2338
+ "learning_rate": 5.49999652314966e-06,
2339
+ "loss": 1.0105,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 1.9034090909090908,
2344
+ "grad_norm": 0.9388637738282897,
2345
+ "learning_rate": 5.477340364997051e-06,
2346
+ "loss": 0.9993,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 1.9090909090909092,
2351
+ "grad_norm": 1.005111659331097,
2352
+ "learning_rate": 5.454674311544236e-06,
2353
+ "loss": 1.024,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 1.9147727272727273,
2358
+ "grad_norm": 1.1189249784542552,
2359
+ "learning_rate": 5.431998832660136e-06,
2360
+ "loss": 0.9167,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 1.9204545454545454,
2365
+ "grad_norm": 0.8754985353482484,
2366
+ "learning_rate": 5.409314398409067e-06,
2367
+ "loss": 0.9509,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 1.9261363636363638,
2372
+ "grad_norm": 1.0077105144422567,
2373
+ "learning_rate": 5.386621479040985e-06,
2374
+ "loss": 0.9802,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 1.9318181818181817,
2379
+ "grad_norm": 1.014077284312571,
2380
+ "learning_rate": 5.363920544981749e-06,
2381
+ "loss": 1.0046,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 1.9375,
2386
+ "grad_norm": 0.8813929725147835,
2387
+ "learning_rate": 5.341212066823356e-06,
2388
+ "loss": 1.006,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 1.9431818181818183,
2393
+ "grad_norm": 0.9749444900176537,
2394
+ "learning_rate": 5.3184965153142e-06,
2395
+ "loss": 0.987,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 1.9488636363636362,
2400
+ "grad_norm": 0.9433156213620226,
2401
+ "learning_rate": 5.295774361349299e-06,
2402
+ "loss": 0.9846,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 1.9545454545454546,
2407
+ "grad_norm": 0.9268456057648533,
2408
+ "learning_rate": 5.27304607596055e-06,
2409
+ "loss": 0.9845,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 1.9602272727272727,
2414
+ "grad_norm": 0.8554873129583374,
2415
+ "learning_rate": 5.250312130306946e-06,
2416
+ "loss": 0.9835,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 1.9659090909090908,
2421
+ "grad_norm": 1.018982780208351,
2422
+ "learning_rate": 5.227572995664819e-06,
2423
+ "loss": 0.9825,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 1.9715909090909092,
2428
+ "grad_norm": 0.9391997048223797,
2429
+ "learning_rate": 5.204829143418072e-06,
2430
+ "loss": 1.0199,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 1.9772727272727273,
2435
+ "grad_norm": 1.0146418881124983,
2436
+ "learning_rate": 5.182081045048404e-06,
2437
+ "loss": 1.0376,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 1.9829545454545454,
2442
+ "grad_norm": 1.0574567491158355,
2443
+ "learning_rate": 5.159329172125533e-06,
2444
+ "loss": 0.9434,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 1.9886363636363638,
2449
+ "grad_norm": 0.8123284335215641,
2450
+ "learning_rate": 5.136573996297431e-06,
2451
+ "loss": 0.9802,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 1.9943181818181817,
2456
+ "grad_norm": 0.9618851741092689,
2457
+ "learning_rate": 5.113815989280528e-06,
2458
+ "loss": 1.0419,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 2.0,
2463
+ "grad_norm": 0.8632945643175781,
2464
+ "learning_rate": 5.091055622849958e-06,
2465
+ "loss": 0.976,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 2.005698005698006,
2470
+ "grad_norm": 1.6043377134817856,
2471
+ "learning_rate": 5.068293368829755e-06,
2472
+ "loss": 0.8913,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 2.011396011396011,
2477
+ "grad_norm": 1.3331364304662667,
2478
+ "learning_rate": 5.045529699083092e-06,
2479
+ "loss": 0.8424,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 2.017094017094017,
2484
+ "grad_norm": 1.100343372994173,
2485
+ "learning_rate": 5.022765085502478e-06,
2486
+ "loss": 0.8664,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 2.022792022792023,
2491
+ "grad_norm": 1.2647408619538267,
2492
+ "learning_rate": 5e-06,
2493
+ "loss": 0.8975,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 2.0284900284900287,
2498
+ "grad_norm": 1.3692030374819484,
2499
+ "learning_rate": 4.977234914497522e-06,
2500
+ "loss": 0.8659,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 2.034188034188034,
2505
+ "grad_norm": 1.04165152843705,
2506
+ "learning_rate": 4.9544703009169115e-06,
2507
+ "loss": 0.8465,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 2.03988603988604,
2512
+ "grad_norm": 1.069447973622135,
2513
+ "learning_rate": 4.931706631170246e-06,
2514
+ "loss": 0.8254,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 2.0455840455840457,
2519
+ "grad_norm": 1.1882943942044963,
2520
+ "learning_rate": 4.9089443771500435e-06,
2521
+ "loss": 0.8759,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 2.051282051282051,
2526
+ "grad_norm": 0.9445235142025882,
2527
+ "learning_rate": 4.886184010719472e-06,
2528
+ "loss": 0.8761,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 2.056980056980057,
2533
+ "grad_norm": 0.9617221724763185,
2534
+ "learning_rate": 4.863426003702572e-06,
2535
+ "loss": 0.822,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 2.0626780626780628,
2540
+ "grad_norm": 0.9901232814378744,
2541
+ "learning_rate": 4.840670827874468e-06,
2542
+ "loss": 0.8423,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 2.0683760683760686,
2547
+ "grad_norm": 0.8710776051974528,
2548
+ "learning_rate": 4.817918954951598e-06,
2549
+ "loss": 0.8415,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 2.074074074074074,
2554
+ "grad_norm": 1.2482792899259578,
2555
+ "learning_rate": 4.795170856581929e-06,
2556
+ "loss": 0.8921,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 2.07977207977208,
2561
+ "grad_norm": 1.1169049347453446,
2562
+ "learning_rate": 4.772427004335183e-06,
2563
+ "loss": 0.8731,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 2.0854700854700856,
2568
+ "grad_norm": 1.0557231424552356,
2569
+ "learning_rate": 4.749687869693056e-06,
2570
+ "loss": 0.8622,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 2.091168091168091,
2575
+ "grad_norm": 0.9181343036612701,
2576
+ "learning_rate": 4.7269539240394505e-06,
2577
+ "loss": 0.8653,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 2.096866096866097,
2582
+ "grad_norm": 0.9543401797100639,
2583
+ "learning_rate": 4.7042256386507e-06,
2584
+ "loss": 0.8419,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 2.1025641025641026,
2589
+ "grad_norm": 1.192131842860604,
2590
+ "learning_rate": 4.681503484685803e-06,
2591
+ "loss": 0.9153,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 2.1082621082621085,
2596
+ "grad_norm": 0.9650701175336839,
2597
+ "learning_rate": 4.6587879331766465e-06,
2598
+ "loss": 0.8422,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 2.113960113960114,
2603
+ "grad_norm": 0.9343115020962703,
2604
+ "learning_rate": 4.636079455018253e-06,
2605
+ "loss": 0.8433,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 2.1196581196581197,
2610
+ "grad_norm": 0.9058357605337869,
2611
+ "learning_rate": 4.613378520959016e-06,
2612
+ "loss": 0.8587,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 2.1253561253561255,
2617
+ "grad_norm": 0.9303289966062062,
2618
+ "learning_rate": 4.5906856015909365e-06,
2619
+ "loss": 0.8799,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 2.131054131054131,
2624
+ "grad_norm": 0.9993338551104146,
2625
+ "learning_rate": 4.568001167339866e-06,
2626
+ "loss": 0.8789,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 2.1367521367521367,
2631
+ "grad_norm": 1.003313234824171,
2632
+ "learning_rate": 4.545325688455766e-06,
2633
+ "loss": 0.8285,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 2.1424501424501425,
2638
+ "grad_norm": 0.9365672809002463,
2639
+ "learning_rate": 4.52265963500295e-06,
2640
+ "loss": 0.8561,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 2.148148148148148,
2645
+ "grad_norm": 0.8712507036248811,
2646
+ "learning_rate": 4.500003476850341e-06,
2647
+ "loss": 0.8262,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 2.1538461538461537,
2652
+ "grad_norm": 0.9228004881023822,
2653
+ "learning_rate": 4.477357683661734e-06,
2654
+ "loss": 0.8766,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 2.1595441595441596,
2659
+ "grad_norm": 1.057083805253911,
2660
+ "learning_rate": 4.454722724886051e-06,
2661
+ "loss": 0.8653,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 2.1652421652421654,
2666
+ "grad_norm": 0.9682059205532203,
2667
+ "learning_rate": 4.432099069747625e-06,
2668
+ "loss": 0.8305,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 2.1709401709401708,
2673
+ "grad_norm": 0.7938300778290989,
2674
+ "learning_rate": 4.40948718723646e-06,
2675
+ "loss": 0.8526,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 2.1766381766381766,
2680
+ "grad_norm": 0.992854757801764,
2681
+ "learning_rate": 4.386887546098509e-06,
2682
+ "loss": 0.7915,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 2.1823361823361824,
2687
+ "grad_norm": 1.1405534353610247,
2688
+ "learning_rate": 4.364300614825963e-06,
2689
+ "loss": 0.8756,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 2.1880341880341883,
2694
+ "grad_norm": 0.9074206322121355,
2695
+ "learning_rate": 4.341726861647537e-06,
2696
+ "loss": 0.8786,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 2.1937321937321936,
2701
+ "grad_norm": 0.9106405803513904,
2702
+ "learning_rate": 4.319166754518768e-06,
2703
+ "loss": 0.8736,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 2.1994301994301995,
2708
+ "grad_norm": 0.9498694178857152,
2709
+ "learning_rate": 4.296620761112299e-06,
2710
+ "loss": 0.8382,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 2.2051282051282053,
2715
+ "grad_norm": 0.9662171207890898,
2716
+ "learning_rate": 4.274089348808202e-06,
2717
+ "loss": 0.846,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 2.2108262108262107,
2722
+ "grad_norm": 0.9597347828021979,
2723
+ "learning_rate": 4.251572984684281e-06,
2724
+ "loss": 0.8565,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 2.2165242165242165,
2729
+ "grad_norm": 1.0199048543960996,
2730
+ "learning_rate": 4.229072135506384e-06,
2731
+ "loss": 0.8634,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 2.2222222222222223,
2736
+ "grad_norm": 0.8699841121610784,
2737
+ "learning_rate": 4.206587267718743e-06,
2738
+ "loss": 0.8704,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 2.2279202279202277,
2743
+ "grad_norm": 0.9870860597778771,
2744
+ "learning_rate": 4.18411884743429e-06,
2745
+ "loss": 0.9155,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 2.2336182336182335,
2750
+ "grad_norm": 0.9765675083733482,
2751
+ "learning_rate": 4.161667340424996e-06,
2752
+ "loss": 0.9111,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 2.2393162393162394,
2757
+ "grad_norm": 1.0450993205368777,
2758
+ "learning_rate": 4.139233212112221e-06,
2759
+ "loss": 0.8791,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 2.245014245014245,
2764
+ "grad_norm": 1.1146726034384589,
2765
+ "learning_rate": 4.116816927557063e-06,
2766
+ "loss": 0.8808,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 2.2507122507122506,
2771
+ "grad_norm": 0.9072001670881498,
2772
+ "learning_rate": 4.094418951450721e-06,
2773
+ "loss": 0.855,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 2.2564102564102564,
2778
+ "grad_norm": 0.928713607803712,
2779
+ "learning_rate": 4.072039748104856e-06,
2780
+ "loss": 0.8895,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 2.262108262108262,
2785
+ "grad_norm": 0.9633556898613354,
2786
+ "learning_rate": 4.0496797814419655e-06,
2787
+ "loss": 0.8809,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 2.267806267806268,
2792
+ "grad_norm": 0.8844497867372285,
2793
+ "learning_rate": 4.0273395149857705e-06,
2794
+ "loss": 0.841,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 2.2735042735042734,
2799
+ "grad_norm": 0.9239145256816056,
2800
+ "learning_rate": 4.0050194118516095e-06,
2801
+ "loss": 0.8251,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 2.2792022792022792,
2806
+ "grad_norm": 1.1068686883079584,
2807
+ "learning_rate": 3.982719934736832e-06,
2808
+ "loss": 0.8515,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 2.284900284900285,
2813
+ "grad_norm": 1.178223126387429,
2814
+ "learning_rate": 3.960441545911205e-06,
2815
+ "loss": 0.886,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 2.2905982905982905,
2820
+ "grad_norm": 0.8243442773624833,
2821
+ "learning_rate": 3.9381847072073346e-06,
2822
+ "loss": 0.8073,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 2.2962962962962963,
2827
+ "grad_norm": 0.8877251522703663,
2828
+ "learning_rate": 3.915949880011096e-06,
2829
+ "loss": 0.8376,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 2.301994301994302,
2834
+ "grad_norm": 1.1086289853786166,
2835
+ "learning_rate": 3.893737525252063e-06,
2836
+ "loss": 0.835,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 2.3076923076923075,
2841
+ "grad_norm": 0.9736495968403257,
2842
+ "learning_rate": 3.871548103393947e-06,
2843
+ "loss": 0.8366,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 2.3133903133903133,
2848
+ "grad_norm": 0.883727910369667,
2849
+ "learning_rate": 3.849382074425069e-06,
2850
+ "loss": 0.8788,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 2.319088319088319,
2855
+ "grad_norm": 0.9302042209091447,
2856
+ "learning_rate": 3.827239897848805e-06,
2857
+ "loss": 0.8105,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 2.324786324786325,
2862
+ "grad_norm": 0.9816375724049557,
2863
+ "learning_rate": 3.805122032674077e-06,
2864
+ "loss": 0.8801,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 2.3304843304843303,
2869
+ "grad_norm": 0.9068093342113286,
2870
+ "learning_rate": 3.7830289374058214e-06,
2871
+ "loss": 0.8926,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 2.336182336182336,
2876
+ "grad_norm": 0.970100166469761,
2877
+ "learning_rate": 3.7609610700355014e-06,
2878
+ "loss": 0.8172,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 2.341880341880342,
2883
+ "grad_norm": 0.8283355970207111,
2884
+ "learning_rate": 3.7389188880315962e-06,
2885
+ "loss": 0.8541,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 2.347578347578348,
2890
+ "grad_norm": 0.836387825954222,
2891
+ "learning_rate": 3.7169028483301333e-06,
2892
+ "loss": 0.8566,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 2.353276353276353,
2897
+ "grad_norm": 0.9704274187846976,
2898
+ "learning_rate": 3.6949134073251993e-06,
2899
+ "loss": 0.856,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 2.358974358974359,
2904
+ "grad_norm": 0.8667279540573334,
2905
+ "learning_rate": 3.6729510208594954e-06,
2906
+ "loss": 0.896,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 2.364672364672365,
2911
+ "grad_norm": 0.9194321407732738,
2912
+ "learning_rate": 3.6510161442148783e-06,
2913
+ "loss": 0.8993,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 2.3703703703703702,
2918
+ "grad_norm": 0.8956254209520699,
2919
+ "learning_rate": 3.6291092321029244e-06,
2920
+ "loss": 0.871,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 2.376068376068376,
2925
+ "grad_norm": 0.8944268521885398,
2926
+ "learning_rate": 3.6072307386554983e-06,
2927
+ "loss": 0.8958,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 2.381766381766382,
2932
+ "grad_norm": 0.8881931841978906,
2933
+ "learning_rate": 3.58538111741535e-06,
2934
+ "loss": 0.8718,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 2.3874643874643873,
2939
+ "grad_norm": 0.8513595068343849,
2940
+ "learning_rate": 3.5635608213267063e-06,
2941
+ "loss": 0.8484,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 2.393162393162393,
2946
+ "grad_norm": 0.9552616565495209,
2947
+ "learning_rate": 3.5417703027258752e-06,
2948
+ "loss": 0.8576,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 2.398860398860399,
2953
+ "grad_norm": 0.884306660742374,
2954
+ "learning_rate": 3.5200100133318836e-06,
2955
+ "loss": 0.8623,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 2.4045584045584047,
2960
+ "grad_norm": 0.8217549127604973,
2961
+ "learning_rate": 3.4982804042370977e-06,
2962
+ "loss": 0.8789,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 2.41025641025641,
2967
+ "grad_norm": 0.9177953454550434,
2968
+ "learning_rate": 3.476581925897885e-06,
2969
+ "loss": 0.8761,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 2.415954415954416,
2974
+ "grad_norm": 0.9191232531329524,
2975
+ "learning_rate": 3.4549150281252635e-06,
2976
+ "loss": 0.8381,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 2.421652421652422,
2981
+ "grad_norm": 0.8942193186940697,
2982
+ "learning_rate": 3.4332801600755895e-06,
2983
+ "loss": 0.9022,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 2.427350427350427,
2988
+ "grad_norm": 1.2155759035608542,
2989
+ "learning_rate": 3.4116777702412374e-06,
2990
+ "loss": 0.8673,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 2.433048433048433,
2995
+ "grad_norm": 0.928253119658496,
2996
+ "learning_rate": 3.39010830644131e-06,
2997
+ "loss": 0.8412,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 2.438746438746439,
3002
+ "grad_norm": 0.8976369958824371,
3003
+ "learning_rate": 3.3685722158123435e-06,
3004
+ "loss": 0.8572,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 2.4444444444444446,
3009
+ "grad_norm": 0.9342007055562026,
3010
+ "learning_rate": 3.3470699447990527e-06,
3011
+ "loss": 0.8389,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 2.45014245014245,
3016
+ "grad_norm": 0.9368785720862421,
3017
+ "learning_rate": 3.3256019391450696e-06,
3018
+ "loss": 0.8447,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 2.455840455840456,
3023
+ "grad_norm": 0.8602147398886509,
3024
+ "learning_rate": 3.3041686438836984e-06,
3025
+ "loss": 0.8314,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 2.4615384615384617,
3030
+ "grad_norm": 0.7971529130684335,
3031
+ "learning_rate": 3.2827705033286937e-06,
3032
+ "loss": 0.8075,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 2.467236467236467,
3037
+ "grad_norm": 0.9022354930189497,
3038
+ "learning_rate": 3.261407961065056e-06,
3039
+ "loss": 0.864,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 2.472934472934473,
3044
+ "grad_norm": 0.8412103377280404,
3045
+ "learning_rate": 3.2400814599398283e-06,
3046
+ "loss": 0.825,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 2.4786324786324787,
3051
+ "grad_norm": 0.963324698161768,
3052
+ "learning_rate": 3.2187914420529176e-06,
3053
+ "loss": 0.8245,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 2.484330484330484,
3058
+ "grad_norm": 0.8974616882015672,
3059
+ "learning_rate": 3.197538348747927e-06,
3060
+ "loss": 0.8574,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 2.49002849002849,
3065
+ "grad_norm": 0.8375456208735425,
3066
+ "learning_rate": 3.176322620603018e-06,
3067
+ "loss": 0.8567,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 2.4957264957264957,
3072
+ "grad_norm": 0.8637885686817552,
3073
+ "learning_rate": 3.1551446974217643e-06,
3074
+ "loss": 0.8348,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 2.5014245014245016,
3079
+ "grad_norm": 0.8964567431940926,
3080
+ "learning_rate": 3.1340050182240438e-06,
3081
+ "loss": 0.8614,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 2.5071225071225074,
3086
+ "grad_norm": 1.0153388506539311,
3087
+ "learning_rate": 3.1129040212369286e-06,
3088
+ "loss": 0.8288,
3089
+ "step": 440
3090
+ }
3091
+ ],
3092
+ "logging_steps": 1,
3093
+ "max_steps": 700,
3094
+ "num_input_tokens_seen": 0,
3095
+ "num_train_epochs": 4,
3096
+ "save_steps": 88,
3097
+ "stateful_callbacks": {
3098
+ "TrainerControl": {
3099
+ "args": {
3100
+ "should_epoch_stop": false,
3101
+ "should_evaluate": false,
3102
+ "should_log": false,
3103
+ "should_save": true,
3104
+ "should_training_stop": false
3105
+ },
3106
+ "attributes": {}
3107
+ }
3108
+ },
3109
+ "total_flos": 4.6500642935537664e+17,
3110
+ "train_batch_size": 2,
3111
+ "trial_name": null,
3112
+ "trial_params": null
3113
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5be3508df238385d3f668c05369bdfc5feb2ccf9045b1ef48250ac9c5b11c08
3
+ size 8056
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)