File size: 6,555 Bytes
bfe8372 7367e7d bfe8372 7367e7d bfe8372 7367e7d bfe8372 7367e7d bfe8372 7367e7d bfe8372 7367e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
License: agpl-3.0
Language:
- En
Pipeline_tag: text-generation
Base_model: nvidia/Mistral-NeMo-Minitron-8B-Base
Tags:
- Chat
license: agpl-3.0
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
tags:
- chat
language:
- en
base_model:
- nvidia/Mistral-NeMo-Minitron-8B-Base
---
An earlier checkpoint of [Darkens-8B] using the same configuration, Finetuned ontop of the Prune/Distill NeMo 8B done by Nvidia, This model aims to have generally good prose and writing.
# Quants
GGUF:
EXL2:
## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
```py
"""<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
## System Prompting
I would highly recommend using Sao10k's Euryale System prompt, But the "Roleplay Simple" system prompt provided within SillyTavern will work aswell.
```
Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.
<Guidelines>
• Maintain the character persona but allow it to evolve with the story.
• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.
• All types of outputs are encouraged; respond accordingly to the narrative.
• Include dialogues, actions, and thoughts in each response.
• Utilize all five senses to describe scenarios within {{char}}'s dialogue.
• Use emotional symbols such as "!" and "~" in appropriate contexts.
• Incorporate onomatopoeia when suitable.
• Allow time for {{user}} to respond with their own input, respecting their agency.
• Act as secondary characters and NPCs as needed, and remove them when appropriate.
• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.
</Guidelines>
<Forbidden>
• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.
• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.
• Repetitive and monotonous outputs.
• Positivity bias in your replies.
• Being overly extreme or NSFW when the narrative context is inappropriate.
</Forbidden>
Follow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.
```
## Axolotl config
<details><summary>See axolotl config</summary>
Axolotl version: `0.4.1`
```yaml
base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
#liger_cross_entropy: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: PRIVATE CLAUDE LOG FILTER
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: sharegpt
conversation: chatml
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
type: sharegpt
conversation: chatml
- path: anthracite-org/nopm_claude_writing_fixed
type: sharegpt
conversation: chatml
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo_opus_misc_240827
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo_misc_part2
type: sharegpt
conversation: chatml
chat_template: chatml
shuffle_merged_datasets: false
default_system_message: "You are a helpful assistant that responds to the user."
dataset_prepared_path: /workspace/data/8b-nemo-fft-data
val_set_size: 0.0
output_dir: /workspace/data/8b-nemo-fft-out
sequence_len: 16384
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 8b-nemoprune-fft
wandb_entity:
wandb_watch:
wandb_name: attempt-01
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /workspace/workspace/thing
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.001
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
```
</details><br>
## Credits
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co./datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
- [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co./datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned)
- [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co./datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co./datasets/anthracite-org/nopm_claude_writing_fixed)
- [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co./datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned)
- [anthracite-org/kalo_opus_misc_240827](https://huggingface.co./datasets/anthracite-org/kalo_opus_misc_240827)
- [anthracite-org/kalo_misc_part2](https://huggingface.co./datasets/anthracite-org/kalo_misc_part2)
- [Private Claude Log filter](https://google.com)
## Training
The training was done for 4 epochs. (This model is the 2 epoch checkpoint), I used 10 x [A40s](https://www.nvidia.com/en-us/data-center/a40/) GPUs graciously provided by [Kalomaze](https://huggingface.co./kalomaze) for the full-parameter fine-tuning of the model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |