File size: 1,596 Bytes
85d2f30
 
0cbf2d1
 
10ea423
0cbf2d1
10ea423
 
 
 
 
 
dc7c958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32681ab
 
 
dc7c958
32681ab
 
 
 
 
 
 
 
 
 
 
dc7c958
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: creativeml-openrail-m
language:
- ta
- en
pipeline_tag: translation
widget:
- text: Thalaivaru nirantharam
inference:
  parameters:
    src_lang : en
    tgt_lang : ta
---
# Model Card for Deepakvictor/tan-ta

<!-- Provide a quick summary of what the model is/does. -->

This model is Finetuned on Facebook's m2m model to convert Tanglish words to Tamil 
## Model Details
Model is finetuned on facebook/m2m100_418M  m2m100_418m page --> https://huggingface.co./facebook/m2m100_418M

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** Deepakvictor
- **Language(s) (NLP):** Tamil,Tanglish
- **Finetuned from model [facebook/m2m100_418M]:** [https://huggingface.co./facebook/m2m100_418M]

### Model Sources 

<!-- Provide the basic links for the model. -->

- **Repository:** [Need to be uploaded]
- **Demo [optional]:** [Need to be uploaded]

<!-- This section is meant to convey both technical and sociotechnical limitations. -->
## How to Get Started with the Model

Use the code below to get started with the model.

```python
# Load model directly from transformers library
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("Deepakvictor/tan-ta")
model = AutoModelForSeq2SeqLM.from_pretrained("Deepakvictor/tan-ta")

#pass the input 
inp = tokenizer("Thalaivaru nirantharam",return_tensors="pt")
out= model.generate(**inp)
tokenizer.batch_decode(out,skip_special_tokens=True)
#['தலைவரு நிரந்தரம்']
```

Repo code --> github.com/devic1 🖤