--- license: mit --- ## MLCD-ViT-bigG Model Card MLCD-ViT-bigG is a state-of-the-art vision transformer model enhanced with 2D Rotary Position Embedding (RoPE2D), achieving superior performance on document understanding and visual question answering tasks. Developed by DeepGlint AI, this model demonstrates exceptional capabilities in processing complex visual-language interactions. We adopted the official [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) and the official training dataset [LLaVA-NeXT-Data](https://huggingface.co./datasets/lmms-lab/LLaVA-NeXT-Data) for evaluating the foundational visual models. | Vision Tower | RoPE2D | ChartQA | DocVQA | InfoVQA | OCRBench | MMMU | | :--------------------------- | :----: | :-------- | :-------- | :-------- | :--------- | :-------- | | CLIP (ViT-L-14-336px) | × | 66.52 | 75.21 | 38.88 | 525.00 | 44.20 | | SigLIP (ViT-SO400M-384px) | × | 69.28 | 76.71 | 41.38 | 554.00 | 46.78 | | DFN5B (ViT-H-14-378px) | × | 64.36 | 70.87 | 38.59 | 473.00 | **48.00** | | **MLCD (ViT-L-14-336px)** | × | 67.84 | 76.46 | 43.48 | 531.00 | 44.30 | | **MLCD (ViT-bigG-14-336px)** | √ | **71.07** | **79.63** | **44.38** | **572.00** | 46.78 | ## Installation ```shell pip install torch transformers git clone https://github.com/deepglint/unicom cd unicom/mlcd ``` ## Usage ```python from vit_rope2d_hf import MLCDVisionModel from transformers import AutoImageProcessor from PIL import Image import torch # Load model and processor model = MLCDVisionModel.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-336") processor = AutoImageProcessor.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-336") # Process single image image = Image.open("document.jpg").convert("RGB") inputs = processor(images=image, return_tensors="pt") # Get visual features with torch.no_grad(): outputs = model(**inputs) features = outputs.last_hidden_state print(f"Extracted features shape: {features.shape}") ```