--- license: [llama2, other] datasets: - cerebras/SlimPajama-627B language: - en pipeline_tag: text-generation tags: - Deci AI - DeciLM model-index: - name: DeciLM 6B results: - task: type: text-generation dataset: type: ai2/arc name: ai2_arc metrics: - name: ARC Challenge type: ARC Challenge value: 42.06 verified: false - task: type: text-generation dataset: type: ai2/arc name: ai2_arc metrics: - name: ARC Easy type: ARC Easy value: 70.02 verified: false - task: type: text-generation dataset: type: boolq name: boolq metrics: - name: BoolQ type: BoolQ value: 71.01 verified: false - task: type: text-generation dataset: type: hellaswag name: hellaswag metrics: - name: HellaSwag type: HellaSwag value: 74.58 verified: false - task: type: text-generation dataset: type: LAMBDA name: OpenAI LAMBDA metrics: - name: LAMBDA type: LAMBDA value: 69.78 verified: false - task: type: text-generation dataset: type: OpenBookQA name: openbookqa metrics: - name: OpenBookQA type: OpenBookQA value: 34 verified: false - task: type: text-generation dataset: type: PIQA name: piqa metrics: - name: PIQA type: PIQA value: 77.09 verified: false - task: type: text-generation dataset: type: truthful_qa name: truthful_qa metrics: - name: TruthfulQA type: TruthfulQA value: 36.19 verified: false - task: type: text-generation dataset: type: winogrande name: winogrande metrics: - name: Winogrande type: Winogrande value: 68.03 verified: false --- # DeciLM 6B DeciLM 6B is a 5.7 billion parameter decoder-only text generation model. With a context window of 4096 tokens, the highly efficient model uses variable Grouped-Query Attention (GQA) to achieve an optimal balance between performance and computational efficiency. The model's architecture was generated using Deci's proprietary Neural Architecture Search-based technology, AutoNAC. ## Model Details ### Model Description Deci developed and publically released the DeciLM 6B large language model, a pretrained, high-efficiency generative text model with 5.7 billion parameters. DeciLM 6B outpaces pretrained models in its class, with a throughput that's up to 15 times that of Llama 2 7B's. DeciLM-6B was further fine-tuned using [LoRA ](https://arxiv.org/pdf/2106.09685.pdf) for instruction following on a subset of the OpenOrca dataset, creating [DeciLM 6B-Instruct](https://huggingface.co./Deci/DeciLM-6b-instruct) - **Developed by:** Deci - **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention. - **Language(s) (NLP):** English - **License:** [Llama 2 Community License Agreement](https://huggingface.co./Deci/DeciLM-6b/blob/main/LICENSE.md) with an extention of Deci regarding hosting service providers. ## Model Architecture | Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads* | Hidden Size | |:----------|:----------|:----------|:----------|:----------|:----------| | 5.7B | 32 | 32 | 4096 | Variable | 4096 | | *AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each layer of the model. - **Decoder layer:** Varible Grouped Query Attention. Grouped Query Attention (GQA) was introduced in [Ainslie et al., 2023](https://arxiv.org/abs/2305.13245) - **Position Embeddings:** Dynamic NTK Scaling Rotary Position Embeddings [Su et al., 2021](https://arxiv.org/abs/2104.09864) ### Model Sources - **Paper:** [DeciLM Technical Blog](https://deci.ai/blog/decilm-15-times-faster-than-llama2-nas-generated-llm-with-variable-gqa/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-6b) - **Demo:** [DeciLM 6B Instruct Demo](https://huggingface.co./spaces/Deci/DeciLM-6b-instruct) - **Notebook:** [DeciLM 6B Notebook](https://colab.research.google.com/drive/1LugJCifOv0L426ukRHjOblBRWwUImAit) ## Uses The model is intended for commercial and research use in English and can be fine-tuned for use in other languages. ## How to Get Started with the Model Use the code below to get started with the model. ```bibtex # pip install -q transformers import torch from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "Deci/DeciLM-6b" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device) inputs = tokenizer.encode("In a shocking finding, scientists discovered a herd of unicorns living in", return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_p=0.95) print(tokenizer.decode(outputs[0])) ``` ## Training Details DeciLM 6B underwent training utilizing a subset of the SlimPajamas dataset, leveraging advanced proprietary methodologies allowing for fast training. ## Evaluation Below are DeciLM's 6B evaluation results. | Average | ARC Challenge* | ARC Easy* | BoolQ | HellaSwag* | LAMBDA OpenAI | OpenBookQA | PIQA | TruthfulQA | Winogrande | |:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------| | 60.33 | 42.06 | 70.02 | 71.01 | 74.58 | 69.78 | 34 | 77.09 |36.19 | 68.03 | Accuracy-norm score* ### Runtime Benchmarks |Inference Tool/Hardware | A10 (tokens/sec) | |:----------|:----------| | PyTorch | 652.49 | | Infery LLM | 2,029.6 | - Throughput (tokens/sec) - Measured with optimal batch - PyTorch BS 64, Infery LLM BS 128 - In order to replicate the results of the PyTorch benchmark, use this [code example](https://huggingface.co./Deci/DeciLM-6b/blob/main/hf_benchmark_example.py) ## How to Cite Please cite this model using this format. ```bibtex @misc{DeciFoundationModels, title = {DeciLM 6B}, author = {DeciAI Research Team}, year = {2023} url={[https://huggingface.co./Deci/DeciLM-6b](https://huggingface.co./Deci/DeciLM-6b)}, } ```