File size: 4,544 Bytes
6861d2a
 
 
 
 
 
 
 
 
 
54da2d3
 
 
f87d1ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54da2d3
 
 
 
 
 
 
 
 
 
 
6861d2a
 
 
fa95231
 
 
 
 
 
 
 
 
 
 
 
 
6861d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
base_model: []
library_name: transformers
tags:
- mergekit
- merge

---
# MN-Rocinante-18.5B-v1.1-Instruct

This repo contains the full precision source code, in "safe tensors" format to generate GGUFs, GPTQ, EXL2, AWQ, HQQ and other formats.
The source code can also be used directly.

<B>IMPORTANT: Highest Quality Settings / Optimal Operation Guide / Parameters and Samplers</B>

If you are going to use this model, (source, GGUF or a different quant), please review this document for critical parameter, sampler and advance sampler settings (for multiple AI/LLM aps).

This a "Class 2" (settings will enhance operation / optional adjustments) model:

For all settings used for this model (including specifics for its "class"), including example generation(s) and for advanced settings guide (which many times addresses any model issue(s)), including methods to improve model performance for all use case(s) as well as chat, roleplay and other use case(s) (especially for use case(s) beyond the model's design) please see:

[ https://huggingface.co./DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]

REASON:

Regardless of "model class" this document will detail methods to enhance operations.

If the model is a Class 3/4 model the default settings (parameters, samplers, advanced samplers) must be set for "use case(s)" uses correctly. Some AI/LLM apps DO NOT have consistant default setting(s) which result in sub-par model operation. Like wise for Class 3/4 models (which operate somewhat to very differently than standard models) additional samplers and advanced samplers settings are required to "smooth out" operation, AND/OR also allow full operation for use cases the model was not designed for.

BONUS - Use these settings for ANY model, ANY repo, ANY quant (including source/full precision):

This document also details parameters, sampler and advanced samplers that can be use FOR ANY MODEL, FROM ANY REPO too - all quants, and of course source code operation too - to enhance the operation of any model.

[ https://huggingface.co./DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]

NOTE:

I strongly suggest you also visit the DavidAU GGUF (below) repo too for more details in using this model ; especially if it is "Class 3" or "Class 4" to get maximum performance from the model.


For full information about this model, including:

- Details about this model and its use case(s).
- Context limits
- Special usage notes / settings.
- Any model(s) used to create this model.
- Template(s) used to access/use this model.
- Example generation(s)
- GGUF quants of this model

Please go to:

[ https://huggingface.co./DavidAU/MN-Rocinante-18.5B-v1.1-Story-Wizard-ED1-Instruct-GGUF ]

Additional Quants:

Imatrix GGUFS:

[ https://huggingface.co./mradermacher/MN-Rocinante-18.5B-v1.1-Instruct-i1-GGUF ]

GGUFS:

[ https://huggingface.co./mradermacher/MN-Rocinante-18.5B-v1.1-Instruct-GGUF ]


---

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the passthrough merge method.

### Models Merged

The following models were included in the merge:
* G:/11B/Rocinante-12B-v1.1
* g:/11b/Mistral-Nemo-Instruct-2407-12B

### Configuration

The following YAML configuration was used to produce this model:

```yaml
# SMB with instruct to help performance.

slices:
 - sources:
   - model: g:/11b/Mistral-Nemo-Instruct-2407-12B
     layer_range: [0, 14]
 - sources:
   - model: G:/11B/Rocinante-12B-v1.1
     layer_range: [8, 24]
     parameters:
       scale:
         - filter: o_proj
           value: 1
         - filter: down_proj
           value: 1
         - value: 1
 - sources:
   - model: g:/11b/Mistral-Nemo-Instruct-2407-12B
     layer_range: [14, 22]
     parameters:
       scale:
         - filter: o_proj
           value: .5
         - filter: down_proj
           value: .5
         - value: 1
 - sources:
   - model: g:/11b/Mistral-Nemo-Instruct-2407-12B
     layer_range: [22, 31]
     parameters:
       scale:
         - filter: o_proj
           value: .75
         - filter: down_proj
           value: .75
         - value: 1
 - sources:
   - model: G:/11B/Rocinante-12B-v1.1
     layer_range: [24, 40]
     parameters:
       scale:
         - filter: o_proj
           value: 1
         - filter: down_proj
           value: 1
         - value: 1
merge_method: passthrough
dtype: bfloat16
```