DashReza7 commited on
Commit
4d0c8c5
·
verified ·
1 Parent(s): 0a49d98

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,687 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:410745
49
+ - loss:ContrastiveLoss
50
+ widget:
51
+ - source_sentence: وینچ
52
+ sentences:
53
+ - ترقه شکلاتی ( هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی ترقه شکلاتی ( هفت ترقه
54
+ ) ناریه پارس درجه 1 بسته 15 عددی 10عدد ناریه ترقه شکلاتی هفت ترقه بار تازه بدون
55
+ رطوبت وخرابی مارک معتبر نورافشانی
56
+ - پارچه میکرو کجراه
57
+ - Car winch-1500LBS-KARA وینچ خودرو آفرود ۶۸۰ کیلوگرم کارا ۱۵۰۰lbs وینچ خودرویی
58
+ (جلو ماشینی) 1500LBS کارا (KARA)
59
+ - source_sentence: ' وسپا '
60
+ sentences:
61
+ - پولوشرت زرد وسپا
62
+ - دوچرخه بند سقفی لیفان X70 ایکس 70 آلومینیومی طرح منابو
63
+ - دوچرخه ویوا Oxygen سایز 26 دوچرخه 26 ويوا OXYGEN دوچرخه کوهستان ویوا مدل OXYGEN
64
+ سایز 26
65
+ - source_sentence: دوچرخه المپیا سایز 27 5
66
+ sentences:
67
+ - دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه
68
+ المپیا کد 16220 سایز 16 - OLYMPIA
69
+ - لامپ اس ام دی خودرو مدل 8B بسته 2 عددی
70
+ - قیمت کمپرس سنج موتور
71
+ - source_sentence: دچرخه ی
72
+ sentences:
73
+ - هیدروفیشیال ۷ کاره نیوفیس پلاس متور سنگین ۲۰۲۲
74
+ - جامدادی کیوت
75
+ - جعبه ی کادو ی رنگی
76
+ - source_sentence: هایومکس
77
+ sentences:
78
+ - انگشتر حدید صینی کد2439
79
+ - ژل هایومکس ولومایزر 2 سی سی
80
+ - دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2
81
+ model-index:
82
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
83
+ results:
84
+ - task:
85
+ type: binary-classification
86
+ name: Binary Classification
87
+ dataset:
88
+ name: Unknown
89
+ type: unknown
90
+ metrics:
91
+ - type: cosine_accuracy
92
+ value: 0.8396327702184535
93
+ name: Cosine Accuracy
94
+ - type: cosine_accuracy_threshold
95
+ value: 0.7623803019523621
96
+ name: Cosine Accuracy Threshold
97
+ - type: cosine_f1
98
+ value: 0.8951804502771806
99
+ name: Cosine F1
100
+ - type: cosine_f1_threshold
101
+ value: 0.7234876751899719
102
+ name: Cosine F1 Threshold
103
+ - type: cosine_precision
104
+ value: 0.8454428891975638
105
+ name: Cosine Precision
106
+ - type: cosine_recall
107
+ value: 0.9511359538406059
108
+ name: Cosine Recall
109
+ - type: cosine_ap
110
+ value: 0.9296495014804667
111
+ name: Cosine Ap
112
+ - type: dot_accuracy
113
+ value: 0.8127916913166371
114
+ name: Dot Accuracy
115
+ - type: dot_accuracy_threshold
116
+ value: 18.16492462158203
117
+ name: Dot Accuracy Threshold
118
+ - type: dot_f1
119
+ value: 0.8798154233377613
120
+ name: Dot F1
121
+ - type: dot_f1_threshold
122
+ value: 17.596263885498047
123
+ name: Dot F1 Threshold
124
+ - type: dot_precision
125
+ value: 0.82272025942101
126
+ name: Dot Precision
127
+ - type: dot_recall
128
+ value: 0.9454261329486717
129
+ name: Dot Recall
130
+ - type: dot_ap
131
+ value: 0.9138496334192171
132
+ name: Dot Ap
133
+ - type: manhattan_accuracy
134
+ value: 0.8362584631565109
135
+ name: Manhattan Accuracy
136
+ - type: manhattan_accuracy_threshold
137
+ value: 56.61064910888672
138
+ name: Manhattan Accuracy Threshold
139
+ - type: manhattan_f1
140
+ value: 0.892930089729684
141
+ name: Manhattan F1
142
+ - type: manhattan_f1_threshold
143
+ value: 60.147003173828125
144
+ name: Manhattan F1 Threshold
145
+ - type: manhattan_precision
146
+ value: 0.8403818109505502
147
+ name: Manhattan Precision
148
+ - type: manhattan_recall
149
+ value: 0.9524882798413271
150
+ name: Manhattan Recall
151
+ - type: manhattan_ap
152
+ value: 0.9274603777518026
153
+ name: Manhattan Ap
154
+ - type: euclidean_accuracy
155
+ value: 0.8366528626832315
156
+ name: Euclidean Accuracy
157
+ - type: euclidean_accuracy_threshold
158
+ value: 3.691666603088379
159
+ name: Euclidean Accuracy Threshold
160
+ - type: euclidean_f1
161
+ value: 0.8933491652479936
162
+ name: Euclidean F1
163
+ - type: euclidean_f1_threshold
164
+ value: 3.691666603088379
165
+ name: Euclidean F1 Threshold
166
+ - type: euclidean_precision
167
+ value: 0.8525051194539249
168
+ name: Euclidean Precision
169
+ - type: euclidean_recall
170
+ value: 0.9383038826782065
171
+ name: Euclidean Recall
172
+ - type: euclidean_ap
173
+ value: 0.9275301813554955
174
+ name: Euclidean Ap
175
+ - type: max_accuracy
176
+ value: 0.8396327702184535
177
+ name: Max Accuracy
178
+ - type: max_accuracy_threshold
179
+ value: 56.61064910888672
180
+ name: Max Accuracy Threshold
181
+ - type: max_f1
182
+ value: 0.8951804502771806
183
+ name: Max F1
184
+ - type: max_f1_threshold
185
+ value: 60.147003173828125
186
+ name: Max F1 Threshold
187
+ - type: max_precision
188
+ value: 0.8525051194539249
189
+ name: Max Precision
190
+ - type: max_recall
191
+ value: 0.9524882798413271
192
+ name: Max Recall
193
+ - type: max_ap
194
+ value: 0.9296495014804667
195
+ name: Max Ap
196
+ - type: cosine_accuracy
197
+ value: 0.831416113411775
198
+ name: Cosine Accuracy
199
+ - type: cosine_accuracy_threshold
200
+ value: 0.7449432611465454
201
+ name: Cosine Accuracy Threshold
202
+ - type: cosine_f1
203
+ value: 0.8897548675482456
204
+ name: Cosine F1
205
+ - type: cosine_f1_threshold
206
+ value: 0.7427525520324707
207
+ name: Cosine F1 Threshold
208
+ - type: cosine_precision
209
+ value: 0.8502039810530351
210
+ name: Cosine Precision
211
+ - type: cosine_recall
212
+ value: 0.9331650438754658
213
+ name: Cosine Recall
214
+ - type: cosine_ap
215
+ value: 0.9252554285491397
216
+ name: Cosine Ap
217
+ - type: dot_accuracy
218
+ value: 0.8083437410986218
219
+ name: Dot Accuracy
220
+ - type: dot_accuracy_threshold
221
+ value: 18.16763687133789
222
+ name: Dot Accuracy Threshold
223
+ - type: dot_f1
224
+ value: 0.8761684843089249
225
+ name: Dot F1
226
+ - type: dot_f1_threshold
227
+ value: 17.106109619140625
228
+ name: Dot F1 Threshold
229
+ - type: dot_precision
230
+ value: 0.8156272661348803
231
+ name: Dot Precision
232
+ - type: dot_recall
233
+ value: 0.9464178386825339
234
+ name: Dot Recall
235
+ - type: dot_ap
236
+ value: 0.9078782883891188
237
+ name: Dot Ap
238
+ - type: manhattan_accuracy
239
+ value: 0.827735051162383
240
+ name: Manhattan Accuracy
241
+ - type: manhattan_accuracy_threshold
242
+ value: 53.94535446166992
243
+ name: Manhattan Accuracy Threshold
244
+ - type: manhattan_f1
245
+ value: 0.887467671202069
246
+ name: Manhattan F1
247
+ - type: manhattan_f1_threshold
248
+ value: 59.66460418701172
249
+ name: Manhattan F1 Threshold
250
+ - type: manhattan_precision
251
+ value: 0.8336590260906306
252
+ name: Manhattan Precision
253
+ - type: manhattan_recall
254
+ value: 0.9487017670393076
255
+ name: Manhattan Recall
256
+ - type: manhattan_ap
257
+ value: 0.9230969972500983
258
+ name: Manhattan Ap
259
+ - type: euclidean_accuracy
260
+ value: 0.8274282959749337
261
+ name: Euclidean Accuracy
262
+ - type: euclidean_accuracy_threshold
263
+ value: 3.4869043827056885
264
+ name: Euclidean Accuracy Threshold
265
+ - type: euclidean_f1
266
+ value: 0.8874656133173449
267
+ name: Euclidean F1
268
+ - type: euclidean_f1_threshold
269
+ value: 3.7965426445007324
270
+ name: Euclidean F1 Threshold
271
+ - type: euclidean_precision
272
+ value: 0.8363423648594751
273
+ name: Euclidean Precision
274
+ - type: euclidean_recall
275
+ value: 0.9452458228152422
276
+ name: Euclidean Recall
277
+ - type: euclidean_ap
278
+ value: 0.9231713715918721
279
+ name: Euclidean Ap
280
+ - type: max_accuracy
281
+ value: 0.831416113411775
282
+ name: Max Accuracy
283
+ - type: max_accuracy_threshold
284
+ value: 53.94535446166992
285
+ name: Max Accuracy Threshold
286
+ - type: max_f1
287
+ value: 0.8897548675482456
288
+ name: Max F1
289
+ - type: max_f1_threshold
290
+ value: 59.66460418701172
291
+ name: Max F1 Threshold
292
+ - type: max_precision
293
+ value: 0.8502039810530351
294
+ name: Max Precision
295
+ - type: max_recall
296
+ value: 0.9487017670393076
297
+ name: Max Recall
298
+ - type: max_ap
299
+ value: 0.9252554285491397
300
+ name: Max Ap
301
+ ---
302
+
303
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
304
+
305
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
306
+
307
+ ## Model Details
308
+
309
+ ### Model Description
310
+ - **Model Type:** Sentence Transformer
311
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
312
+ - **Maximum Sequence Length:** 128 tokens
313
+ - **Output Dimensionality:** 384 tokens
314
+ - **Similarity Function:** Cosine Similarity
315
+ <!-- - **Training Dataset:** Unknown -->
316
+ <!-- - **Language:** Unknown -->
317
+ <!-- - **License:** Unknown -->
318
+
319
+ ### Model Sources
320
+
321
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
322
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
323
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
324
+
325
+ ### Full Model Architecture
326
+
327
+ ```
328
+ SentenceTransformer(
329
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
330
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
331
+ )
332
+ ```
333
+
334
+ ## Usage
335
+
336
+ ### Direct Usage (Sentence Transformers)
337
+
338
+ First install the Sentence Transformers library:
339
+
340
+ ```bash
341
+ pip install -U sentence-transformers
342
+ ```
343
+
344
+ Then you can load this model and run inference.
345
+ ```python
346
+ from sentence_transformers import SentenceTransformer
347
+
348
+ # Download from the 🤗 Hub
349
+ model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v4")
350
+ # Run inference
351
+ sentences = [
352
+ 'هایومکس',
353
+ 'ژل هایومکس ولومایزر 2 سی سی',
354
+ 'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
355
+ ]
356
+ embeddings = model.encode(sentences)
357
+ print(embeddings.shape)
358
+ # [3, 384]
359
+
360
+ # Get the similarity scores for the embeddings
361
+ similarities = model.similarity(embeddings, embeddings)
362
+ print(similarities.shape)
363
+ # [3, 3]
364
+ ```
365
+
366
+ <!--
367
+ ### Direct Usage (Transformers)
368
+
369
+ <details><summary>Click to see the direct usage in Transformers</summary>
370
+
371
+ </details>
372
+ -->
373
+
374
+ <!--
375
+ ### Downstream Usage (Sentence Transformers)
376
+
377
+ You can finetune this model on your own dataset.
378
+
379
+ <details><summary>Click to expand</summary>
380
+
381
+ </details>
382
+ -->
383
+
384
+ <!--
385
+ ### Out-of-Scope Use
386
+
387
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
388
+ -->
389
+
390
+ ## Evaluation
391
+
392
+ ### Metrics
393
+
394
+ #### Binary Classification
395
+
396
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
397
+
398
+ | Metric | Value |
399
+ |:-----------------------------|:-----------|
400
+ | cosine_accuracy | 0.8396 |
401
+ | cosine_accuracy_threshold | 0.7624 |
402
+ | cosine_f1 | 0.8952 |
403
+ | cosine_f1_threshold | 0.7235 |
404
+ | cosine_precision | 0.8454 |
405
+ | cosine_recall | 0.9511 |
406
+ | cosine_ap | 0.9296 |
407
+ | dot_accuracy | 0.8128 |
408
+ | dot_accuracy_threshold | 18.1649 |
409
+ | dot_f1 | 0.8798 |
410
+ | dot_f1_threshold | 17.5963 |
411
+ | dot_precision | 0.8227 |
412
+ | dot_recall | 0.9454 |
413
+ | dot_ap | 0.9138 |
414
+ | manhattan_accuracy | 0.8363 |
415
+ | manhattan_accuracy_threshold | 56.6106 |
416
+ | manhattan_f1 | 0.8929 |
417
+ | manhattan_f1_threshold | 60.147 |
418
+ | manhattan_precision | 0.8404 |
419
+ | manhattan_recall | 0.9525 |
420
+ | manhattan_ap | 0.9275 |
421
+ | euclidean_accuracy | 0.8367 |
422
+ | euclidean_accuracy_threshold | 3.6917 |
423
+ | euclidean_f1 | 0.8933 |
424
+ | euclidean_f1_threshold | 3.6917 |
425
+ | euclidean_precision | 0.8525 |
426
+ | euclidean_recall | 0.9383 |
427
+ | euclidean_ap | 0.9275 |
428
+ | max_accuracy | 0.8396 |
429
+ | max_accuracy_threshold | 56.6106 |
430
+ | max_f1 | 0.8952 |
431
+ | max_f1_threshold | 60.147 |
432
+ | max_precision | 0.8525 |
433
+ | max_recall | 0.9525 |
434
+ | **max_ap** | **0.9296** |
435
+
436
+ #### Binary Classification
437
+
438
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:-----------------------------|:-----------|
442
+ | cosine_accuracy | 0.8314 |
443
+ | cosine_accuracy_threshold | 0.7449 |
444
+ | cosine_f1 | 0.8898 |
445
+ | cosine_f1_threshold | 0.7428 |
446
+ | cosine_precision | 0.8502 |
447
+ | cosine_recall | 0.9332 |
448
+ | cosine_ap | 0.9253 |
449
+ | dot_accuracy | 0.8083 |
450
+ | dot_accuracy_threshold | 18.1676 |
451
+ | dot_f1 | 0.8762 |
452
+ | dot_f1_threshold | 17.1061 |
453
+ | dot_precision | 0.8156 |
454
+ | dot_recall | 0.9464 |
455
+ | dot_ap | 0.9079 |
456
+ | manhattan_accuracy | 0.8277 |
457
+ | manhattan_accuracy_threshold | 53.9454 |
458
+ | manhattan_f1 | 0.8875 |
459
+ | manhattan_f1_threshold | 59.6646 |
460
+ | manhattan_precision | 0.8337 |
461
+ | manhattan_recall | 0.9487 |
462
+ | manhattan_ap | 0.9231 |
463
+ | euclidean_accuracy | 0.8274 |
464
+ | euclidean_accuracy_threshold | 3.4869 |
465
+ | euclidean_f1 | 0.8875 |
466
+ | euclidean_f1_threshold | 3.7965 |
467
+ | euclidean_precision | 0.8363 |
468
+ | euclidean_recall | 0.9452 |
469
+ | euclidean_ap | 0.9232 |
470
+ | max_accuracy | 0.8314 |
471
+ | max_accuracy_threshold | 53.9454 |
472
+ | max_f1 | 0.8898 |
473
+ | max_f1_threshold | 59.6646 |
474
+ | max_precision | 0.8502 |
475
+ | max_recall | 0.9487 |
476
+ | **max_ap** | **0.9253** |
477
+
478
+ <!--
479
+ ## Bias, Risks and Limitations
480
+
481
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
482
+ -->
483
+
484
+ <!--
485
+ ### Recommendations
486
+
487
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
488
+ -->
489
+
490
+ ## Training Details
491
+
492
+ ### Training Hyperparameters
493
+ #### Non-Default Hyperparameters
494
+
495
+ - `eval_strategy`: steps
496
+ - `per_device_train_batch_size`: 128
497
+ - `per_device_eval_batch_size`: 128
498
+ - `learning_rate`: 2e-05
499
+ - `num_train_epochs`: 1
500
+ - `warmup_ratio`: 0.1
501
+ - `fp16`: True
502
+
503
+ #### All Hyperparameters
504
+ <details><summary>Click to expand</summary>
505
+
506
+ - `overwrite_output_dir`: False
507
+ - `do_predict`: False
508
+ - `eval_strategy`: steps
509
+ - `prediction_loss_only`: True
510
+ - `per_device_train_batch_size`: 128
511
+ - `per_device_eval_batch_size`: 128
512
+ - `per_gpu_train_batch_size`: None
513
+ - `per_gpu_eval_batch_size`: None
514
+ - `gradient_accumulation_steps`: 1
515
+ - `eval_accumulation_steps`: None
516
+ - `learning_rate`: 2e-05
517
+ - `weight_decay`: 0.0
518
+ - `adam_beta1`: 0.9
519
+ - `adam_beta2`: 0.999
520
+ - `adam_epsilon`: 1e-08
521
+ - `max_grad_norm`: 1.0
522
+ - `num_train_epochs`: 1
523
+ - `max_steps`: -1
524
+ - `lr_scheduler_type`: linear
525
+ - `lr_scheduler_kwargs`: {}
526
+ - `warmup_ratio`: 0.1
527
+ - `warmup_steps`: 0
528
+ - `log_level`: passive
529
+ - `log_level_replica`: warning
530
+ - `log_on_each_node`: True
531
+ - `logging_nan_inf_filter`: True
532
+ - `save_safetensors`: True
533
+ - `save_on_each_node`: False
534
+ - `save_only_model`: False
535
+ - `restore_callback_states_from_checkpoint`: False
536
+ - `no_cuda`: False
537
+ - `use_cpu`: False
538
+ - `use_mps_device`: False
539
+ - `seed`: 42
540
+ - `data_seed`: None
541
+ - `jit_mode_eval`: False
542
+ - `use_ipex`: False
543
+ - `bf16`: False
544
+ - `fp16`: True
545
+ - `fp16_opt_level`: O1
546
+ - `half_precision_backend`: auto
547
+ - `bf16_full_eval`: False
548
+ - `fp16_full_eval`: False
549
+ - `tf32`: None
550
+ - `local_rank`: 0
551
+ - `ddp_backend`: None
552
+ - `tpu_num_cores`: None
553
+ - `tpu_metrics_debug`: False
554
+ - `debug`: []
555
+ - `dataloader_drop_last`: False
556
+ - `dataloader_num_workers`: 0
557
+ - `dataloader_prefetch_factor`: None
558
+ - `past_index`: -1
559
+ - `disable_tqdm`: False
560
+ - `remove_unused_columns`: True
561
+ - `label_names`: None
562
+ - `load_best_model_at_end`: False
563
+ - `ignore_data_skip`: False
564
+ - `fsdp`: []
565
+ - `fsdp_min_num_params`: 0
566
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
567
+ - `fsdp_transformer_layer_cls_to_wrap`: None
568
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
569
+ - `deepspeed`: None
570
+ - `label_smoothing_factor`: 0.0
571
+ - `optim`: adamw_torch
572
+ - `optim_args`: None
573
+ - `adafactor`: False
574
+ - `group_by_length`: False
575
+ - `length_column_name`: length
576
+ - `ddp_find_unused_parameters`: None
577
+ - `ddp_bucket_cap_mb`: None
578
+ - `ddp_broadcast_buffers`: False
579
+ - `dataloader_pin_memory`: True
580
+ - `dataloader_persistent_workers`: False
581
+ - `skip_memory_metrics`: True
582
+ - `use_legacy_prediction_loop`: False
583
+ - `push_to_hub`: False
584
+ - `resume_from_checkpoint`: None
585
+ - `hub_model_id`: None
586
+ - `hub_strategy`: every_save
587
+ - `hub_private_repo`: False
588
+ - `hub_always_push`: False
589
+ - `gradient_checkpointing`: False
590
+ - `gradient_checkpointing_kwargs`: None
591
+ - `include_inputs_for_metrics`: False
592
+ - `eval_do_concat_batches`: True
593
+ - `fp16_backend`: auto
594
+ - `push_to_hub_model_id`: None
595
+ - `push_to_hub_organization`: None
596
+ - `mp_parameters`:
597
+ - `auto_find_batch_size`: False
598
+ - `full_determinism`: False
599
+ - `torchdynamo`: None
600
+ - `ray_scope`: last
601
+ - `ddp_timeout`: 1800
602
+ - `torch_compile`: False
603
+ - `torch_compile_backend`: None
604
+ - `torch_compile_mode`: None
605
+ - `dispatch_batches`: None
606
+ - `split_batches`: None
607
+ - `include_tokens_per_second`: False
608
+ - `include_num_input_tokens_seen`: False
609
+ - `neftune_noise_alpha`: None
610
+ - `optim_target_modules`: None
611
+ - `batch_eval_metrics`: False
612
+ - `eval_on_start`: False
613
+ - `batch_sampler`: batch_sampler
614
+ - `multi_dataset_batch_sampler`: proportional
615
+
616
+ </details>
617
+
618
+ ### Training Logs
619
+ | Epoch | Step | Training Loss | loss | max_ap |
620
+ |:------:|:----:|:-------------:|:------:|:------:|
621
+ | None | 0 | - | - | 0.8131 |
622
+ | 0.1558 | 500 | 0.0262 | - | - |
623
+ | 0.3116 | 1000 | 0.0184 | - | - |
624
+ | 0.4674 | 1500 | 0.0173 | - | - |
625
+ | 0.6232 | 2000 | 0.0164 | 0.0155 | 0.9253 |
626
+ | 0.7791 | 2500 | 0.016 | - | - |
627
+ | 0.9349 | 3000 | 0.0155 | - | - |
628
+ | 1.0 | 3209 | - | - | 0.9296 |
629
+
630
+
631
+ ### Framework Versions
632
+ - Python: 3.10.12
633
+ - Sentence Transformers: 3.0.1
634
+ - Transformers: 4.42.4
635
+ - PyTorch: 2.4.0+cu121
636
+ - Accelerate: 0.32.1
637
+ - Datasets: 2.21.0
638
+ - Tokenizers: 0.19.1
639
+
640
+ ## Citation
641
+
642
+ ### BibTeX
643
+
644
+ #### Sentence Transformers
645
+ ```bibtex
646
+ @inproceedings{reimers-2019-sentence-bert,
647
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
648
+ author = "Reimers, Nils and Gurevych, Iryna",
649
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
650
+ month = "11",
651
+ year = "2019",
652
+ publisher = "Association for Computational Linguistics",
653
+ url = "https://arxiv.org/abs/1908.10084",
654
+ }
655
+ ```
656
+
657
+ #### ContrastiveLoss
658
+ ```bibtex
659
+ @inproceedings{hadsell2006dimensionality,
660
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
661
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
662
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
663
+ year={2006},
664
+ volume={2},
665
+ number={},
666
+ pages={1735-1742},
667
+ doi={10.1109/CVPR.2006.100}
668
+ }
669
+ ```
670
+
671
+ <!--
672
+ ## Glossary
673
+
674
+ *Clearly define terms in order to be accessible across audiences.*
675
+ -->
676
+
677
+ <!--
678
+ ## Model Card Authors
679
+
680
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
681
+ -->
682
+
683
+ <!--
684
+ ## Model Card Contact
685
+
686
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
687
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5d1aa91c436385696c5a7486f26cb4f0b5b114688e4a68c6745cc75cc026b83
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260