---
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: apache-2.0
datasets:
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/stheno-filtered-v1.1
- PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
pipeline_tag: text-generation
model-index:
- name: Crimson_Dawn-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 31.03
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 21.69
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.72
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.47
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.9
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.1
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2
name: Open LLM Leaderboard
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64adfd277b5ff762771e4571/AEWJsybnM6wILRxgwlmrU.png)
Taking what seemed to work out well with Crimson_Dawn-v0.1, the new Crimson_Dawn-v0.2 is the same training methodology, training on [Mistral-Nemo-Base-2407](https://huggingface.co./mistralai/Mistral-Nemo-Base-2407) this time I've added significantly more data, as well as trained using RSLoRA as opposed to regular LoRA. Another key change is training on ChatML as opposed to Mistral Formatting.
# Quants!
full / [exl2](https://huggingface.co./Epiculous/Crimson_Dawn-v0.2-exl2) / [gguf](https://huggingface.co./Epiculous/Crimson_Dawn-v0.2-GGUF)
## Prompting
The v0.2 models are trained on ChatML, the prompting structure goes a little something like this:
```
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
```
### Context and Instruct
The v0.2 models are trained on ChatML, please use that Context and Instruct template.
### Current Top Sampler Settings
[Spicy_Temp](https://files.catbox.moe/9npj0z.json)
[Violet_Twilight-Nitral-Special](https://files.catbox.moe/ot54u3.json)
## Training
Training was done twice over 2 epochs each on two 2x [NVIDIA A6000 GPUs](https://www.nvidia.com/en-us/design-visualization/rtx-a6000/) using LoRA. A two-phased approach was used in which the base model was trained 2 epochs on RP data, the LoRA was then applied to base. Finally, the new modified base was trained 2 epochs on instruct, and the new instruct LoRA was applied to the modified base, resulting in what you see here.
[](https://github.com/axolotl-ai-cloud/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Epiculous__Crimson_Dawn-v0.2)
| Metric |Value|
|-------------------|----:|
|Avg. |14.82|
|IFEval (0-Shot) |31.03|
|BBH (3-Shot) |21.69|
|MATH Lvl 5 (4-Shot)| 2.72|
|GPQA (0-shot) | 3.47|
|MuSR (0-shot) |10.90|
|MMLU-PRO (5-shot) |19.10|