--- language: - en - fr - de - es - it - pt - ru - zh - ja license: apache-2.0 datasets: - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - anthracite-org/stheno-filtered-v1.1 - PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT - Gryphe/Sonnet3.5-Charcard-Roleplay - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - anthracite-org/kalo-opus-instruct-22k-no-refusal - anthracite-org/nopm_claude_writing_fixed - anthracite-org/kalo_opus_misc_240827 pipeline_tag: text-generation model-index: - name: Crimson_Dawn-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 31.03 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 21.69 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.72 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 3.47 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 10.9 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 19.1 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Crimson_Dawn-v0.2 name: Open LLM Leaderboard --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64adfd277b5ff762771e4571/AEWJsybnM6wILRxgwlmrU.png) Taking what seemed to work out well with Crimson_Dawn-v0.1, the new Crimson_Dawn-v0.2 is the same training methodology, training on [Mistral-Nemo-Base-2407](https://huggingface.co./mistralai/Mistral-Nemo-Base-2407) this time I've added significantly more data, as well as trained using RSLoRA as opposed to regular LoRA. Another key change is training on ChatML as opposed to Mistral Formatting. # Quants! full / [exl2](https://huggingface.co./Epiculous/Crimson_Dawn-v0.2-exl2) / [gguf](https://huggingface.co./Epiculous/Crimson_Dawn-v0.2-GGUF) ## Prompting The v0.2 models are trained on ChatML, the prompting structure goes a little something like this: ``` <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant ``` ### Context and Instruct The v0.2 models are trained on ChatML, please use that Context and Instruct template. ### Current Top Sampler Settings [Spicy_Temp](https://files.catbox.moe/9npj0z.json)
[Violet_Twilight-Nitral-Special](https://files.catbox.moe/ot54u3.json)
## Training Training was done twice over 2 epochs each on two 2x [NVIDIA A6000 GPUs](https://www.nvidia.com/en-us/design-visualization/rtx-a6000/) using LoRA. A two-phased approach was used in which the base model was trained 2 epochs on RP data, the LoRA was then applied to base. Finally, the new modified base was trained 2 epochs on instruct, and the new instruct LoRA was applied to the modified base, resulting in what you see here. [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Epiculous__Crimson_Dawn-v0.2) | Metric |Value| |-------------------|----:| |Avg. |14.82| |IFEval (0-Shot) |31.03| |BBH (3-Shot) |21.69| |MATH Lvl 5 (4-Shot)| 2.72| |GPQA (0-shot) | 3.47| |MuSR (0-shot) |10.90| |MMLU-PRO (5-shot) |19.10|