File size: 3,634 Bytes
dfedea2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T
tags:
- generated_from_trainer
model-index:
- name: out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# out
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 300
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.388 | 0.03 | 30 | 2.3495 |
| 2.3877 | 0.05 | 60 | 2.2353 |
| 2.1812 | 0.08 | 90 | 2.1786 |
| 2.1711 | 0.1 | 120 | 2.1453 |
| 2.098 | 0.13 | 150 | 2.1210 |
| 2.0884 | 0.15 | 180 | 2.1037 |
| 2.0129 | 0.18 | 210 | 2.0894 |
| 2.0921 | 0.2 | 240 | 2.0765 |
| 2.001 | 0.23 | 270 | 2.0648 |
| 2.0986 | 0.25 | 300 | 2.0550 |
| 2.0128 | 0.28 | 330 | 2.0458 |
| 2.1144 | 0.3 | 360 | 2.0385 |
| 2.0711 | 0.33 | 390 | 2.0308 |
| 1.9607 | 0.36 | 420 | 2.0239 |
| 1.9092 | 0.38 | 450 | 2.0179 |
| 2.1955 | 0.41 | 480 | 2.0121 |
| 2.0293 | 0.43 | 510 | 2.0063 |
| 2.0482 | 0.46 | 540 | 2.0017 |
| 2.0518 | 0.48 | 570 | 2.0036 |
| 1.9647 | 0.51 | 600 | 1.9984 |
| 2.0573 | 0.53 | 630 | 1.9938 |
| 1.9912 | 0.56 | 660 | 1.9879 |
| 1.9836 | 0.58 | 690 | 1.9866 |
| 1.9514 | 0.61 | 720 | 1.9834 |
| 1.9413 | 0.63 | 750 | 1.9792 |
| 1.9775 | 0.66 | 780 | 1.9726 |
| 1.9499 | 0.69 | 810 | 1.9690 |
| 2.0497 | 0.71 | 840 | 1.9663 |
| 2.0045 | 0.74 | 870 | 1.9636 |
| 2.0324 | 0.76 | 900 | 1.9605 |
| 1.9913 | 0.79 | 930 | 1.9574 |
| 1.9861 | 0.81 | 960 | 1.9553 |
| 1.8449 | 0.84 | 990 | 1.9527 |
| 1.9932 | 0.86 | 1020 | 1.9502 |
| 1.9845 | 0.89 | 1050 | 1.9485 |
| 2.0407 | 0.91 | 1080 | 1.9494 |
| 1.9496 | 0.94 | 1110 | 1.9448 |
| 1.9851 | 0.97 | 1140 | 1.9406 |
| 1.9856 | 0.99 | 1170 | 1.9391 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0
|