--- license: mit --- # SQLMaster A minimum of 10 GB VRAM is required. ## Colab Example https://colab.research.google.com/drive/1Nvwie-klMNPPWI4o7Nae4l5spxEX1PaD?usp=sharing ## Install Prerequisite ```bash !pip install peft !pip install transformers !pip install bitsandbytes !pip install accelerate ``` ## Login Using Huggingface Token ```bash # You need a huggingface token that can access llama2 from huggingface_hub import notebook_login notebook_login() ``` ## Download Model ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig device = torch.device("cuda" if torch.cuda.is_available() else "cpu") bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) peft_model_id = "Danjie/SQLMaster_13b" config = PeftConfig.from_pretrained(peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map='auto', quantization_config=bnb_config) model.resize_token_embeddings(len(tokenizer) + 1) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) ``` ## Inference ```python def create_sql_query(question: str, context: str) -> str: input = "Question: " + question + "\nContext:" + context + "\nAnswer" # Encode and move tensor into cuda if applicable. encoded_input = tokenizer(input, return_tensors='pt') encoded_input = {k: v.to(device) for k, v in encoded_input.items()} output = model.generate(**encoded_input, max_new_tokens=256) response = tokenizer.decode(output[0], skip_special_tokens=True) response = response[len(input):] return response ``` ## Example ```python create_sql_query("What is the highest age of users with name Danjie", "CREATE TABLE user (age INTEGER, name STRING)") ```