Added instruction to run inference on 13b SQLMaster
Browse files
README.md
CHANGED
@@ -1,3 +1,68 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# SQLMaster
|
6 |
+
A minimum of 10 GB VRAM is required.
|
7 |
+
|
8 |
+
## Colab Example
|
9 |
+
https://colab.research.google.com/drive/1Nvwie-klMNPPWI4o7Nae4l5spxEX1PaD?usp=sharing
|
10 |
+
|
11 |
+
## Install Prerequisite
|
12 |
+
```bash
|
13 |
+
!pip install peft
|
14 |
+
!pip install transformers
|
15 |
+
!pip install bitsandbytes
|
16 |
+
!pip install accelerate
|
17 |
+
```
|
18 |
+
|
19 |
+
## Login Using Huggingface Token
|
20 |
+
```bash
|
21 |
+
# You need a huggingface token that can access llama2
|
22 |
+
from huggingface_hub import notebook_login
|
23 |
+
notebook_login()
|
24 |
+
```
|
25 |
+
|
26 |
+
## Download Model
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
from peft import PeftModel, PeftConfig
|
30 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
|
33 |
+
bnb_config = BitsAndBytesConfig(
|
34 |
+
load_in_4bit=True,
|
35 |
+
bnb_4bit_use_double_quant=True,
|
36 |
+
bnb_4bit_quant_type="nf4",
|
37 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
38 |
+
)
|
39 |
+
|
40 |
+
peft_model_id = "Danjie/SQLMaster_13b"
|
41 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map='auto', quantization_config=bnb_config)
|
44 |
+
model.resize_token_embeddings(len(tokenizer) + 1)
|
45 |
+
|
46 |
+
# Load the Lora model
|
47 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
48 |
+
```
|
49 |
+
|
50 |
+
## Inference
|
51 |
+
```python
|
52 |
+
def create_sql_query(question: str, context: str) -> str:
|
53 |
+
input = "Question: " + question + "\nContext:" + context + "\nAnswer"
|
54 |
+
|
55 |
+
# Encode and move tensor into cuda if applicable.
|
56 |
+
encoded_input = tokenizer(input, return_tensors='pt')
|
57 |
+
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
|
58 |
+
|
59 |
+
output = model.generate(**encoded_input, max_new_tokens=256)
|
60 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
+
response = response[len(input):]
|
62 |
+
return response
|
63 |
+
```
|
64 |
+
|
65 |
+
## Example
|
66 |
+
```python
|
67 |
+
create_sql_query("What is the highest age of users with name Danjie", "CREATE TABLE user (age INTEGER, name STRING)")
|
68 |
+
```
|