--- language: - en license: mit base_model: microsoft/deberta-v3-base tags: - nycu-112-2-datamining-hw2 - generated_from_trainer datasets: - DandinPower/review_onlytitleandtext metrics: - accuracy model-index: - name: deberta-v3-base-otat results: - task: name: Text Classification type: text-classification dataset: name: DandinPower/review_onlytitleandtext type: DandinPower/review_onlytitleandtext metrics: - name: Accuracy type: accuracy value: 0.6360357142857143 --- # deberta-v3-base-otat This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co./microsoft/deberta-v3-base) on the DandinPower/review_onlytitleandtext dataset. It achieves the following results on the evaluation set: - Loss: 1.5029 - Accuracy: 0.6360 - Macro F1: 0.6367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.9961 | 0.57 | 500 | 0.9958 | 0.5675 | 0.5638 | | 0.9267 | 1.14 | 1000 | 0.9776 | 0.5814 | 0.5727 | | 0.9086 | 1.71 | 1500 | 1.1673 | 0.5709 | 0.5355 | | 0.744 | 2.29 | 2000 | 0.9788 | 0.6325 | 0.6267 | | 0.7131 | 2.86 | 2500 | 0.9493 | 0.6219 | 0.6203 | | 0.5815 | 3.43 | 3000 | 0.9966 | 0.6224 | 0.6259 | | 0.5434 | 4.0 | 3500 | 1.1400 | 0.6336 | 0.6326 | | 0.3162 | 4.57 | 4000 | 1.5029 | 0.6360 | 0.6367 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2