--- language: - en license: mit base_model: microsoft/deberta-v3-base tags: - nycu-112-2-datamining-hw2 - generated_from_trainer datasets: - DandinPower/review_onlytitleandtext metrics: - accuracy model-index: - name: deberta-v3-base-otat-recommened-hp results: - task: name: Text Classification type: text-classification dataset: name: DandinPower/review_onlytitleandtext type: DandinPower/review_onlytitleandtext metrics: - name: Accuracy type: accuracy value: 0.6617142857142857 --- # deberta-v3-base-otat-recommened-hp This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co./microsoft/deberta-v3-base) on the DandinPower/review_onlytitleandtext dataset. It achieves the following results on the evaluation set: - Loss: 0.8654 - Accuracy: 0.6617 - Macro F1: 0.6582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.8299 | 1.14 | 500 | 0.8488 | 0.6484 | 0.6448 | | 0.7147 | 2.29 | 1000 | 0.8250 | 0.6561 | 0.6480 | | 0.6487 | 3.43 | 1500 | 0.8193 | 0.6581 | 0.6596 | | 0.5704 | 4.57 | 2000 | 0.8654 | 0.6617 | 0.6582 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2