--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - DamarJati/GreenLabel-Waste-Types metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1 --- This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0150 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5566 | 0.98 | 11 | 0.1846 | 0.975 | | 0.1031 | 1.96 | 22 | 0.0150 | 1.0 | | 0.0345 | 2.93 | 33 | 0.0031 | 1.0 | | 0.0117 | 4.0 | 45 | 0.0008 | 1.0 | | 0.0256 | 4.98 | 56 | 0.0008 | 1.0 | | 0.0136 | 5.87 | 66 | 0.0007 | 1.0 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3