--- language: - en license: mit base_model: distilbert-base-uncased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/distilbert-base-uncased-biored-finetuned results: [] --- # Dagobert42/distilbert-base-uncased-biored-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.6868 - Accuracy: 0.7768 - Precision: 0.5392 - Recall: 0.4561 - F1: 0.4898 - Weighted F1: 0.764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 25 | 0.9323 | 0.7124 | 0.3944 | 0.1486 | 0.1309 | 0.5993 | | No log | 2.0 | 50 | 0.8737 | 0.7248 | 0.5187 | 0.2132 | 0.2341 | 0.6271 | | No log | 3.0 | 75 | 0.8157 | 0.7353 | 0.4968 | 0.2886 | 0.3314 | 0.6804 | | No log | 4.0 | 100 | 0.7927 | 0.7452 | 0.5213 | 0.3185 | 0.3686 | 0.6883 | | No log | 5.0 | 125 | 0.7601 | 0.7507 | 0.5119 | 0.3734 | 0.4161 | 0.7116 | | No log | 6.0 | 150 | 0.7480 | 0.7555 | 0.5381 | 0.3829 | 0.4285 | 0.718 | | No log | 7.0 | 175 | 0.7393 | 0.7588 | 0.5393 | 0.4031 | 0.4479 | 0.7272 | | No log | 8.0 | 200 | 0.7342 | 0.7655 | 0.5512 | 0.4143 | 0.4614 | 0.7363 | | No log | 9.0 | 225 | 0.7391 | 0.7591 | 0.5262 | 0.4425 | 0.4709 | 0.7395 | | No log | 10.0 | 250 | 0.7264 | 0.7644 | 0.5332 | 0.4539 | 0.4849 | 0.7484 | | No log | 11.0 | 275 | 0.7350 | 0.7694 | 0.5419 | 0.452 | 0.4852 | 0.7483 | | No log | 12.0 | 300 | 0.7389 | 0.77 | 0.5341 | 0.4641 | 0.4921 | 0.752 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.0