--- language: - en license: mit base_model: distilbert-base-uncased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/distilbert-base-uncased-biored-augmented results: [] --- # Dagobert42/distilbert-base-uncased-biored-augmented This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.5141 - Accuracy: 0.8189 - Precision: 0.6146 - Recall: 0.5864 - F1: 0.5983 - Weighted F1: 0.8169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 25 | 0.5409 | 0.807 | 0.6881 | 0.5326 | 0.5615 | 0.7971 | | No log | 2.0 | 50 | 0.5368 | 0.8108 | 0.7021 | 0.5447 | 0.5781 | 0.8012 | | No log | 3.0 | 75 | 0.5383 | 0.8161 | 0.6921 | 0.5484 | 0.5835 | 0.8057 | | No log | 4.0 | 100 | 0.5349 | 0.8131 | 0.6408 | 0.5885 | 0.6008 | 0.8103 | | No log | 5.0 | 125 | 0.5436 | 0.8157 | 0.6275 | 0.606 | 0.6097 | 0.8136 | | No log | 6.0 | 150 | 0.5488 | 0.8201 | 0.6805 | 0.5826 | 0.6043 | 0.8146 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.0