File size: 2,202 Bytes
112feb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0cd86
 
 
 
 
 
112feb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0cd86
 
 
 
 
112feb6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- en
license: mit
base_model: distilbert-base-uncased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/distilbert-base-uncased-biored-augmented
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Dagobert42/distilbert-base-uncased-biored-augmented

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the bigbio/biored dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5843
- Accuracy: 0.7932
- Precision: 0.599
- Recall: 0.5407
- F1: 0.5617
- Weighted F1: 0.7888

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Weighted F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| No log        | 1.0   | 25   | 0.6232          | 0.7797   | 0.5883    | 0.4544 | 0.5018 | 0.7583      |
| No log        | 2.0   | 50   | 0.6072          | 0.7871   | 0.575     | 0.4951 | 0.5268 | 0.7726      |
| No log        | 3.0   | 75   | 0.6059          | 0.7869   | 0.5665    | 0.5208 | 0.5389 | 0.7788      |
| No log        | 4.0   | 100  | 0.6088          | 0.791    | 0.5756    | 0.5006 | 0.5282 | 0.7742      |
| No log        | 5.0   | 125  | 0.6066          | 0.7916   | 0.5761    | 0.5067 | 0.5361 | 0.7781      |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.15.0