--- base_model: unsloth/qwen2.5-coder-1.5b-instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en datasets: - Daemontatox/math_conv library_name: transformers model-index: - name: Zirel_1.5 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 41.68 name: averaged accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 15.08 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 11.33 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 1.34 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 3.33 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 12.71 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5 name: Open LLM Leaderboard --- # Zireal 1.5 - Fast Reasoning Model **Developed by:** Daemontatox **Finetuned from:** [unsloth/qwen2.5-coder-1.5b-instruct](https://huggingface.co./unsloth/qwen2.5-coder-1.5b-instruct) **License:** Apache 2.0 ## Overview **Zireal 1.5** is a **fast, efficient reasoning model** designed for structured problem-solving and mathematical inference. It has been fine-tuned using **GRPO (General Reinforcement Policy Optimization)** on **24,000 high-quality mathematical examples**, making it highly effective for step-by-step reasoning and logic-based tasks. ## Features - **Optimized for fast, structured reasoning** with minimal computational overhead. - **GRPO-trained** for superior decision-making in mathematical contexts. - **Lightweight yet highly capable**, leveraging Qwen2.5's instruction-tuned efficiency. - **Ideal for logic, algebra, arithmetic, and structured problem-solving.** ## Usage You can load **Zireal 1.5** using `transformers`: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Daemontatox/Zireal-1.5" # Replace with actual model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) inputs = tokenizer("Solve: 3x - 7 = 11", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Intended Use - **Mathematical reasoning** (algebra, arithmetic, logic-based problems). - **Step-by-step structured problem-solving** for computational tasks. - **Lightweight inference** for fast, efficient reasoning applications. ## Limitations - Primarily designed for structured reasoning rather than open-ended text generation. - Best suited for logic and mathematics rather than creative or conversational AI. ## Acknowledgments **Zireal 1.5** is part of the **Zireal** model series, focusing on efficient and necessary reasoning. It is built on **Qwen2.5** and optimized using **Unsloth** for high-performance inference. --- 🔗 **[Hugging Face Model Card](https://huggingface.co./Daemontatox/Zireal-1.5)** (Replace with actual link) 📜 **License:** Apache 2.0 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/Daemontatox__Zirel_1.5-details)! Summarized results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FZirel_1.5&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)! | Metric |Value (%)| |-------------------|--------:| |**Average** | 14.24| |IFEval (0-Shot) | 41.68| |BBH (3-Shot) | 15.08| |MATH Lvl 5 (4-Shot)| 11.33| |GPQA (0-shot) | 1.34| |MuSR (0-shot) | 3.33| |MMLU-PRO (5-shot) | 12.71|