File size: 5,858 Bytes
88154b9 6d466e4 88154b9 53af159 7e76368 88154b9 6d466e4 88154b9 6d466e4 88154b9 6d466e4 7e76368 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
base_model: unsloth/qwen2.5-coder-1.5b-instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
datasets:
- Daemontatox/math_conv
library_name: transformers
model-index:
- name: Zirel_1.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 41.68
name: averaged accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 15.08
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.33
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.34
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.33
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.71
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FZirel_1.5
name: Open LLM Leaderboard
---
# Zireal 1.5 - Fast Reasoning Model
**Developed by:** Daemontatox
**Finetuned from:** [unsloth/qwen2.5-coder-1.5b-instruct](https://huggingface.co./unsloth/qwen2.5-coder-1.5b-instruct)
**License:** Apache 2.0
## Overview
**Zireal 1.5** is a **fast, efficient reasoning model** designed for structured problem-solving and mathematical inference. It has been fine-tuned using **GRPO (General Reinforcement Policy Optimization)** on **24,000 high-quality mathematical examples**, making it highly effective for step-by-step reasoning and logic-based tasks.
## Features
- **Optimized for fast, structured reasoning** with minimal computational overhead.
- **GRPO-trained** for superior decision-making in mathematical contexts.
- **Lightweight yet highly capable**, leveraging Qwen2.5's instruction-tuned efficiency.
- **Ideal for logic, algebra, arithmetic, and structured problem-solving.**
## Usage
You can load **Zireal 1.5** using `transformers`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Daemontatox/Zireal-1.5" # Replace with actual model name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
inputs = tokenizer("Solve: 3x - 7 = 11", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Intended Use
- **Mathematical reasoning** (algebra, arithmetic, logic-based problems).
- **Step-by-step structured problem-solving** for computational tasks.
- **Lightweight inference** for fast, efficient reasoning applications.
## Limitations
- Primarily designed for structured reasoning rather than open-ended text generation.
- Best suited for logic and mathematics rather than creative or conversational AI.
## Acknowledgments
**Zireal 1.5** is part of the **Zireal** model series, focusing on efficient and necessary reasoning. It is built on **Qwen2.5** and optimized using **Unsloth** for high-performance inference.
---
๐ **[Hugging Face Model Card](https://huggingface.co./Daemontatox/Zireal-1.5)** (Replace with actual link)
๐ **License:** Apache 2.0
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/Daemontatox__Zirel_1.5-details)!
Summarized results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FZirel_1.5&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 14.24|
|IFEval (0-Shot) | 41.68|
|BBH (3-Shot) | 15.08|
|MATH Lvl 5 (4-Shot)| 11.33|
|GPQA (0-shot) | 1.34|
|MuSR (0-shot) | 3.33|
|MMLU-PRO (5-shot) | 12.71|
|