--- library_name: transformers license: apache-2.0 base_model: dandelin/vilt-b32-mlm tags: - generated_from_trainer model-index: - name: results2 results: [] --- # results2 This model is a fine-tuned version of [dandelin/vilt-b32-mlm](https://huggingface.co./dandelin/vilt-b32-mlm) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 54.5580 - Bleu Score: {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 5.701223175160721e-08, 'length_ratio': 0.05656108597285068, 'translation_length': 300, 'reference_length': 5304} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu Score | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 620.8193 | 1.0 | 63 | 177.3467 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 5.701223175160721e-08, 'length_ratio': 0.05656108597285068, 'translation_length': 300, 'reference_length': 5304} | | 140.721 | 2.0 | 126 | 65.7476 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 5.701223175160721e-08, 'length_ratio': 0.05656108597285068, 'translation_length': 300, 'reference_length': 5304} | | 60.0697 | 3.0 | 189 | 54.5580 | {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 5.701223175160721e-08, 'length_ratio': 0.05656108597285068, 'translation_length': 300, 'reference_length': 5304} | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1