--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-qmc-domain-v1 此模型是基于之前开源[问题匹配模型](https://huggingface.co./DMetaSoul/sbert-chinese-qmc-domain-v1)的蒸馏轻量化版本(仅含4层 BERT),适用于**开放领域的问题匹配**场景,比如: - 洗澡用什么香皂好?vs. 洗澡用什么香皂好 - 大连哪里拍婚纱照好点? vs. 大连哪里拍婚纱照比较好 - 银行卡怎样挂失?vs. 银行卡丢了怎么挂失啊? 离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 4% 左右(具体结果详见下文评估小节)。 # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-domain-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 这里主要跟蒸馏前对应的 teacher 模型作了对比 *性能:* | | Teacher | Student | Gap | | ---------- | --------------------- | ------------------- | ----- | | Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x | | Cost | 23s | 12s | -47% | | Latency | 38ms | 20ms | -47% | | Throughput | 421 sentence/s | 791 sentence/s | 1.9x | *精度:* | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** | | -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- | | **Teacher** | 80.90% | 76.62% | 34.51% | 77.05% | 52.95% | 12.97% | 59.47% | 56.35% | | **Student** | 79.89% | 76.34% | 27.59% | 69.26% | 49.40% | 9.06% | 53.52% | 52.15% | | **Gap** (abs.) | - | - | - | - | - | - | - | -4.2% | *基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256* ## Citing & Authors E-mail: xiaowenbin@dmetasoul.com