--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - generator library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: ICSR_classification_finetuned_llama_adapters_V100_test results: [] --- # ICSR_classification_finetuned_llama_adapters_V100_test This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.2486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3176 | 0.2915 | 500 | 1.2861 | | 1.2716 | 0.5829 | 1000 | 1.2627 | | 1.248 | 0.8744 | 1500 | 1.2486 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.0 - Pytorch 2.2.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1