Upload folder using huggingface_hub
Browse files- README.md +88 -0
- adapter_config.json +37 -0
- adapter_model.safetensors +3 -0
- pytorch_model.bin +3 -0
- tokenizer.json +0 -0
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.2
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model: meta-llama/Llama-3.2-1B
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
library_name: peft
|
8 |
+
tags:
|
9 |
+
- regression
|
10 |
+
- story-point-estimation
|
11 |
+
- software-engineering
|
12 |
+
datasets:
|
13 |
+
- datamanagement
|
14 |
+
metrics:
|
15 |
+
- mae
|
16 |
+
- mdae
|
17 |
+
model-index:
|
18 |
+
- name: llama-3.2-1b-story-point-estimation
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: regression
|
22 |
+
name: Story Point Estimation
|
23 |
+
dataset:
|
24 |
+
name: datamanagement Dataset
|
25 |
+
type: datamanagement
|
26 |
+
split: test
|
27 |
+
metrics:
|
28 |
+
- type: mae
|
29 |
+
value: 7.25
|
30 |
+
name: Mean Absolute Error (MAE)
|
31 |
+
- type: mdae
|
32 |
+
value: 4.142
|
33 |
+
name: Median Absolute Error (MdAE)
|
34 |
+
---
|
35 |
+
# LLAMA 3 Story Point Estimator - datamanagement
|
36 |
+
|
37 |
+
This model is fine-tuned on issue descriptions from datamanagement and tested on datamanagement for story point estimation.
|
38 |
+
|
39 |
+
## Model Details
|
40 |
+
- Base Model: LLAMA 3.2 1B
|
41 |
+
- Training Project: datamanagement
|
42 |
+
- Test Project: datamanagement
|
43 |
+
- Task: Story Point Estimation (Regression)
|
44 |
+
- Architecture: PEFT (LoRA)
|
45 |
+
- Tokenizer: SP Word Level
|
46 |
+
|
47 |
+
- Input: Issue titles
|
48 |
+
- Output: Story point estimation (continuous value)
|
49 |
+
|
50 |
+
## Usage
|
51 |
+
```python
|
52 |
+
from transformers import AutoModelForSequenceClassification
|
53 |
+
from peft import PeftConfig, PeftModel
|
54 |
+
from tokenizers import Tokenizer
|
55 |
+
|
56 |
+
# Load peft config model
|
57 |
+
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/2-LLAMA3SP-datamanagement")
|
58 |
+
|
59 |
+
# Load tokenizer and model
|
60 |
+
tokenizer = Tokenizer.from_pretrained("DEVCamiloSepulveda/2-LLAMA3SP-datamanagement")
|
61 |
+
base_model = AutoModelForSequenceClassification.from_pretrained(
|
62 |
+
config.base_model_name_or_path,
|
63 |
+
num_labels=1,
|
64 |
+
torch_dtype=torch.float16,
|
65 |
+
device_map='auto'
|
66 |
+
)
|
67 |
+
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/2-LLAMA3SP-datamanagement")
|
68 |
+
|
69 |
+
# Prepare input text
|
70 |
+
text = "Your issue description here"
|
71 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")
|
72 |
+
|
73 |
+
# Get prediction
|
74 |
+
outputs = model(**inputs)
|
75 |
+
story_points = outputs.logits.item()
|
76 |
+
```
|
77 |
+
|
78 |
+
## Training Details
|
79 |
+
- Fine-tuning method: LoRA (Low-Rank Adaptation)
|
80 |
+
- Sequence length: 20 tokens
|
81 |
+
- Best training epoch: 17 / 20 epochs
|
82 |
+
- Batch size: 32
|
83 |
+
- Training time: 2414.499 seconds
|
84 |
+
- Mean Absolute Error (MAE): 7.250
|
85 |
+
- Median Absolute Error (MdAE): 4.142
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- PEFT 0.14.0
|
adapter_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Llama-3.2-1B",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.1,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [
|
21 |
+
"classifier",
|
22 |
+
"score"
|
23 |
+
],
|
24 |
+
"peft_type": "LORA",
|
25 |
+
"r": 8,
|
26 |
+
"rank_pattern": {},
|
27 |
+
"revision": null,
|
28 |
+
"target_modules": [
|
29 |
+
"k_proj",
|
30 |
+
"q_proj",
|
31 |
+
"o_proj",
|
32 |
+
"v_proj"
|
33 |
+
],
|
34 |
+
"task_type": "SEQ_CLS",
|
35 |
+
"use_dora": false,
|
36 |
+
"use_rslora": false
|
37 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58f25aea77f94a73d2f7f517b9ae1f9efae732aead65740bf0d9c416530ad34c
|
3 |
+
size 6840816
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e90fd88b1005325fec28d76e9f5f163cd2b3487ec01b130eaf49d025019d6a1c
|
3 |
+
size 1560270490
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|