File size: 21,829 Bytes
5836b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py.
# Below is the original copyright:
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch VideoLLaMA3 vision encoder model."""

import importlib.util
import os.path as osp
import math
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn.init import _calculate_fan_in_and_fan_out

from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available

if is_flash_attn_2_available():
    from flash_attn import flash_attn_varlen_func
else:
    flash_attn_varlen_func = None

try:
    from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig
except ImportError:
    spec = importlib.util.spec_from_file_location(
        "configuration_videollama3_encoder",
        osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"),
    )
    configuration_videollama3_encoder = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(configuration_videollama3_encoder)
    Videollama3VisionEncoderConfig = getattr(
        configuration_videollama3_encoder,
        "Videollama3VisionEncoderConfig",
    )


def _trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    # Values are generated by using a truncated uniform distribution and
    # then using the inverse CDF for the normal distribution.
    # Get upper and lower cdf values
    l = norm_cdf((a - mean) / std)
    u = norm_cdf((b - mean) / std)

    # Uniformly fill tensor with values from [l, u], then translate to
    # [2l-1, 2u-1].
    tensor.uniform_(2 * l - 1, 2 * u - 1)

    # Use inverse cdf transform for normal distribution to get truncated
    # standard normal
    tensor.erfinv_()

    # Transform to proper mean, std
    tensor.mul_(std * math.sqrt(2.0))
    tensor.add_(mean)

    # Clamp to ensure it's in the proper range
    tensor.clamp_(min=a, max=b)


def trunc_normal_tf_(
    tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> torch.Tensor:
    """Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \\leq \text{mean} \\leq b`.

    NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
    bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
    and the result is subsequently scaled and shifted by the mean and std args.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    """
    with torch.no_grad():
        _trunc_normal_(tensor, 0, 1.0, a, b)
        tensor.mul_(std).add_(mean)


def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    if mode == "fan_in":
        denom = fan_in
    elif mode == "fan_out":
        denom = fan_out
    elif mode == "fan_avg":
        denom = (fan_in + fan_out) / 2

    variance = scale / denom

    if distribution == "truncated_normal":
        # constant is stddev of standard normal truncated to (-2, 2)
        trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
    elif distribution == "normal":
        with torch.no_grad():
            tensor.normal_(std=math.sqrt(variance))
    elif distribution == "uniform":
        bound = math.sqrt(3 * variance)
        with torch.no_grad():
            tensor.uniform_(-bound, bound)
    else:
        raise ValueError(f"invalid distribution {distribution}")


def lecun_normal_(tensor):
    variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")


def default_flax_embed_init(tensor):
    variance_scaling_(tensor, mode="fan_in", distribution="normal")


# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
    orig_dtype = tensor.dtype
    tensor = tensor.float()
    cos = freqs.cos()
    sin = freqs.sin()
    cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    output = (tensor * cos) + (rotate_half(tensor) * sin)
    output = output.to(orig_dtype)
    return output


class VisionRotaryEmbedding(nn.Module):

    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs
    

class Videollama3VisionEmbeddings(nn.Module):

    def __init__(self, config: Videollama3VisionEncoderConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = hidden_states.view(
            -1, self.config.num_channels, self.patch_size, self.patch_size
        )
        patch_embeds = self.patch_embedding(hidden_states)  # shape = [*, width, grid, grid]
        # embeddings = patch_embeds.flatten(2).transpose(1, 2)
        embeddings = patch_embeds.view(-1, self.embed_dim)

        return embeddings


class VisionAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor = None,
    ) -> torch.Tensor:
        """Input shape: Time x Channel"""

        q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(q_len, self.num_heads, self.head_dim)
        key_states = key_states.view(q_len, self.num_heads, self.head_dim)
        value_states = value_states.view(q_len, self.num_heads, self.head_dim)

        query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
        key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool)
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True

        query_states = query_states.transpose(0, 1)
        key_states = key_states.transpose(0, 1)
        value_states = value_states.transpose(0, 1)

        attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim)
        attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(q_len, -1)
        attn_output = self.out_proj(attn_output)

        return attn_output


class VisionFlashAttention2(VisionAttention):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor = None,
    ) -> torch.Tensor:
        q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # Flash attention requires the input to have the shape
        # batch_size x seq_length x head_dim x hidden_dim
        # therefore we just need to keep the original shape
        query_states = query_states.view(q_len, self.num_heads, self.head_dim)
        key_states = key_states.view(q_len, self.num_heads, self.head_dim)
        value_states = value_states.view(q_len, self.num_heads, self.head_dim)
        query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
        key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
        
        max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
        attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
            q_len, -1
        )
        attn_output = self.out_proj(attn_output)
        
        return attn_output


class VisionSdpaAttention(VisionAttention):

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor = None,
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(seq_length, self.num_heads, self.head_dim)
        key_states = key_states.view(seq_length, self.num_heads, self.head_dim)
        value_states = value_states.view(seq_length, self.num_heads, self.head_dim)

        query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
        key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool)
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True

        query_states = query_states.transpose(0, 1)
        key_states = key_states.transpose(0, 1)
        value_states = value_states.transpose(0, 1)
        attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0)
        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(seq_length, -1)
        attn_output = self.proj(attn_output)
        return attn_output


VISION_ATTENTION_CLASSES = {
    "eager": VisionAttention,
    "flash_attention_2": VisionFlashAttention2,
    "sdpa": VisionSdpaAttention,
}


# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Videollama3
class Videollama3VisionMLP(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class Videollama3VisionEncoderLayer(nn.Module):

    def __init__(self, config: Videollama3VisionEncoderConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = Videollama3VisionMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    # Ignore copy
    def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
        hidden_states = hidden_states + self.self_attn(
            self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
        )
        hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states))
        return hidden_states


class Videollama3VisionTransformerEncoder(nn.Module):

    def __init__(self, config: Videollama3VisionEncoderConfig):
        super().__init__()
        self.config = config
        head_dim = config.hidden_size // config.num_attention_heads
        self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
        self.layers = nn.ModuleList([Videollama3VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def rot_pos_emb(self, grid_sizes, merge_sizes):
        pos_ids = []
        for (t, h, w), merge_size in zip(grid_sizes, merge_sizes):
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // merge_size,
                merge_size,
                w // merge_size,
                merge_size,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // merge_size,
                merge_size,
                w // merge_size,
                merge_size,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))

        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_sizes[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)

        return rotary_pos_emb

    def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor:
        rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes)

        cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32)
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        for blk in self.layers:
            if self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    blk.__call__,
                    hidden_states,
                    cu_seqlens,
                    rotary_pos_emb
                )
            else:
                hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)

        return hidden_states


class Videollama3VisionEncoderModel(PreTrainedModel):

    config_class = Videollama3VisionEncoderConfig
    base_model_prefix = "videollama3"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _no_split_modules = [
        "Videollama3VisionEncoderLayer",
        "Videollama3VisionEmbeddings",
    ]
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def __init__(self, config: Videollama3VisionEncoderConfig):
        super().__init__(config=config)
        embed_dim = config.hidden_size

        self.embeddings = Videollama3VisionEmbeddings(config)
        self.encoder = Videollama3VisionTransformerEncoder(config)
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

        self.post_init()

    def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor:
        hidden_states = self.embeddings(pixel_values)
        hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes)
        hidden_states = self.post_layernorm(hidden_states)

        hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0)
        outputs = []

        for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes):
            # NOTE: previous implementation, which supports downsampling with any factor
            c = hidden_states.shape[-1]
            hidden_states = hidden_states.view(
                grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size,  c
            ).permute(0, 1, 3, 2, 4, 5)
            hidden_states = hidden_states.reshape(
                grid_size[0], grid_size[1], grid_size[2], c
            ).permute(0, 3, 1, 2)
            hidden_states = torch.nn.functional.interpolate(
                hidden_states,
                size=(grid_size[1] // merge_size, grid_size[2] // merge_size),
                mode='bilinear'
            )
            hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c)

            # NOTE: simplified implementation, which only supports downsampling with integer factor
            # NOTE: this implementation is mathematically equivalent to the previous one when merge_size is 1 or 2 but may cause slightly different results
            # hidden_states = hidden_states.view(-1, merge_size * merge_size, hidden_states.size(-1))
            # hidden_states = hidden_states.mean(dim=1)

            outputs.append(hidden_states)

        return torch.cat(outputs, dim=0)

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Embedding):
            default_flax_embed_init(module.weight)
        elif isinstance(module, VisionAttention):
            nn.init.xavier_uniform_(module.q_proj.weight)
            nn.init.xavier_uniform_(module.k_proj.weight)
            nn.init.xavier_uniform_(module.v_proj.weight)
            nn.init.xavier_uniform_(module.out_proj.weight)
            nn.init.zeros_(module.q_proj.bias)
            nn.init.zeros_(module.k_proj.bias)
            nn.init.zeros_(module.v_proj.bias)
            nn.init.zeros_(module.out_proj.bias)
        elif isinstance(module, Videollama3VisionMLP):
            nn.init.xavier_uniform_(module.fc1.weight)
            nn.init.xavier_uniform_(module.fc2.weight)
            nn.init.normal_(module.fc1.bias, std=1e-6)
            nn.init.normal_(module.fc2.bias, std=1e-6)
        elif isinstance(module, (nn.Linear, nn.Conv2d)):
            lecun_normal_(module.weight)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)