VideoLLaMA3-7B-Image / modeling_videollama3_encoder.py
ClownRat's picture
Upload Videollama3Qwen2ForCausalLM
5a918de verified
raw
history blame
21.8 kB
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py.
# Below is the original copyright:
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch VideoLLaMA3 vision encoder model."""
import importlib.util
import os.path as osp
import math
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn.init import _calculate_fan_in_and_fan_out
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available
if is_flash_attn_2_available():
from flash_attn import flash_attn_varlen_func
else:
flash_attn_varlen_func = None
try:
from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig
except ImportError:
spec = importlib.util.spec_from_file_location(
"configuration_videollama3_encoder",
osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"),
)
configuration_videollama3_encoder = importlib.util.module_from_spec(spec)
spec.loader.exec_module(configuration_videollama3_encoder)
Videollama3VisionEncoderConfig = getattr(
configuration_videollama3_encoder,
"Videollama3VisionEncoderConfig",
)
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsequently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
orig_dtype = tensor.dtype
tensor = tensor.float()
cos = freqs.cos()
sin = freqs.sin()
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
output = (tensor * cos) + (rotate_half(tensor) * sin)
output = output.to(orig_dtype)
return output
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class Videollama3VisionEmbeddings(nn.Module):
def __init__(self, config: Videollama3VisionEncoderConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.view(
-1, self.config.num_channels, self.patch_size, self.patch_size
)
patch_embeds = self.patch_embedding(hidden_states) # shape = [*, width, grid, grid]
# embeddings = patch_embeds.flatten(2).transpose(1, 2)
embeddings = patch_embeds.view(-1, self.embed_dim)
return embeddings
class VisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor = None,
) -> torch.Tensor:
"""Input shape: Time x Channel"""
q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(q_len, self.num_heads, self.head_dim)
value_states = value_states.view(q_len, self.num_heads, self.head_dim)
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
query_states = query_states.transpose(0, 1)
key_states = key_states.transpose(0, 1)
value_states = value_states.transpose(0, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(q_len, -1)
attn_output = self.out_proj(attn_output)
return attn_output
class VisionFlashAttention2(VisionAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor = None,
) -> torch.Tensor:
q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(q_len, self.num_heads, self.head_dim)
value_states = value_states.view(q_len, self.num_heads, self.head_dim)
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
q_len, -1
)
attn_output = self.out_proj(attn_output)
return attn_output
class VisionSdpaAttention(VisionAttention):
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor = None,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(seq_length, self.num_heads, self.head_dim)
key_states = key_states.view(seq_length, self.num_heads, self.head_dim)
value_states = value_states.view(seq_length, self.num_heads, self.head_dim)
query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
query_states = query_states.transpose(0, 1)
key_states = key_states.transpose(0, 1)
value_states = value_states.transpose(0, 1)
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
VISION_ATTENTION_CLASSES = {
"eager": VisionAttention,
"flash_attention_2": VisionFlashAttention2,
"sdpa": VisionSdpaAttention,
}
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Videollama3
class Videollama3VisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Videollama3VisionEncoderLayer(nn.Module):
def __init__(self, config: Videollama3VisionEncoderConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Videollama3VisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
# Ignore copy
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
hidden_states = hidden_states + self.self_attn(
self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
)
hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states))
return hidden_states
class Videollama3VisionTransformerEncoder(nn.Module):
def __init__(self, config: Videollama3VisionEncoderConfig):
super().__init__()
self.config = config
head_dim = config.hidden_size // config.num_attention_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.layers = nn.ModuleList([Videollama3VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def rot_pos_emb(self, grid_sizes, merge_sizes):
pos_ids = []
for (t, h, w), merge_size in zip(grid_sizes, merge_sizes):
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // merge_size,
merge_size,
w // merge_size,
merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // merge_size,
merge_size,
w // merge_size,
merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_sizes[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor:
rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes)
cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for blk in self.layers:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
blk.__call__,
hidden_states,
cu_seqlens,
rotary_pos_emb
)
else:
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
return hidden_states
class Videollama3VisionEncoderModel(PreTrainedModel):
config_class = Videollama3VisionEncoderConfig
base_model_prefix = "videollama3"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = [
"Videollama3VisionEncoderLayer",
"Videollama3VisionEmbeddings",
]
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, config: Videollama3VisionEncoderConfig):
super().__init__(config=config)
embed_dim = config.hidden_size
self.embeddings = Videollama3VisionEmbeddings(config)
self.encoder = Videollama3VisionTransformerEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.post_init()
def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor:
hidden_states = self.embeddings(pixel_values)
hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes)
hidden_states = self.post_layernorm(hidden_states)
hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0)
outputs = []
for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes):
# NOTE: previous implementation, which supports downsampling with any factor
c = hidden_states.shape[-1]
hidden_states = hidden_states.view(
grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size, c
).permute(0, 1, 3, 2, 4, 5)
hidden_states = hidden_states.reshape(
grid_size[0], grid_size[1], grid_size[2], c
).permute(0, 3, 1, 2)
hidden_states = torch.nn.functional.interpolate(
hidden_states,
size=(grid_size[1] // merge_size, grid_size[2] // merge_size),
mode='bilinear'
)
hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c)
# NOTE: simplified implementation, which only supports downsampling with integer factor
# NOTE: this implementation is mathematically equivalent to the previous one when merge_size is 1 or 2 but may cause slightly different results
# hidden_states = hidden_states.view(-1, merge_size * merge_size, hidden_states.size(-1))
# hidden_states = hidden_states.mean(dim=1)
outputs.append(hidden_states)
return torch.cat(outputs, dim=0)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, VisionAttention):
nn.init.xavier_uniform_(module.q_proj.weight)
nn.init.xavier_uniform_(module.k_proj.weight)
nn.init.xavier_uniform_(module.v_proj.weight)
nn.init.xavier_uniform_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, Videollama3VisionMLP):
nn.init.xavier_uniform_(module.fc1.weight)
nn.init.xavier_uniform_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)