File size: 17,759 Bytes
5a918de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# Adopted from https://github.com/haotian-liu/LLaVA.
# Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch VideoLLaMA3 model."""
import importlib.util
import os.path as osp
import re
from abc import ABC, abstractmethod
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers import AutoModel, Qwen2ForCausalLM, Qwen2Model
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast
try:
from .configuration_videollama3 import Videollama3Qwen2Config
except ModuleNotFoundError:
spec = importlib.util.spec_from_file_location(
"configuration_videollama3",
osp.join(osp.dirname(__file__), "configuration_videollama3.py"),
)
configuration_videollama3 = importlib.util.module_from_spec(spec)
spec.loader.exec_module(configuration_videollama3)
Videollama3Qwen2Config = getattr(
configuration_videollama3,
"Videollama3Qwen2Config",
)
def build_mlp(depth, hidden_size, output_hidden_size):
modules = [nn.Linear(hidden_size, output_hidden_size)]
for _ in range(1, depth):
modules.append(nn.GELU())
modules.append(nn.Linear(output_hidden_size, output_hidden_size))
return nn.Sequential(*modules)
def build_vision_projector(config, delay_load=False, **kwargs):
# videollama3 projector only support image-wise operation now, i.e., prohibit the temporal aggregation
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == "linear":
# NOTE: for both linear and mlp2x_gelu projector type, mean pooling is adopted to aggreate video features
return nn.Linear(config.mm_hidden_size, config.hidden_size)
elif projector_type.startswith("mlp"):
return MlpGeluProjector(config, projector_type)
else:
raise ValueError(f'Unknown projector type: {projector_type}')
class MlpGeluProjector(nn.Module):
def __init__(self, config, projector_type):
super().__init__()
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
mlp_depth = int(mlp_gelu_match.group(1))
self.readout = build_mlp(mlp_depth, config.vision_encoder_config.hidden_size, config.hidden_size)
def forward(self, x):
x = self.readout(x)
return x
class Videollama3MetaModel:
def __init__(self, config):
super(Videollama3MetaModel, self).__init__(config)
if config.vision_encoder is not None:
self.vision_encoder = AutoModel.from_pretrained(
config.vision_encoder,
attn_implementation=self.config._attn_implementation,
torch_dtype=self.dtype,
)
self.config.vision_encoder_config = self.vision_encoder.config
self.config.vision_encoder = None
elif config.vision_encoder_config is not None:
self.vision_encoder = AutoModel.from_config(
self.config.vision_encoder_config,
attn_implementation=self.config._attn_implementation,
torch_dtype=self.dtype,
)
else:
raise ValueError("Vision encoder is not provided in config")
self.mm_projector = build_vision_projector(config)
def get_vision_encoder(self):
return self.vision_encoder
def get_mm_projector(self):
return self.mm_projector
class Videollama3Qwen2Model(Videollama3MetaModel, Qwen2Model):
config_class = Videollama3Qwen2Config
def __init__(self, config: Videollama3Qwen2Config):
super(Videollama3Qwen2Model, self).__init__(config)
class Videollama3MetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_encoder(self):
return self.get_model().get_vision_encoder()
def get_mm_projector(self):
return self.get_model().get_mm_projector()
def encode_images(
self,
pixel_values: torch.FloatTensor,
grid_sizes: torch.LongTensor,
merge_sizes: torch.LongTensor,
) -> torch.FloatTensor:
mm_features = self.get_model().get_vision_encoder()(
pixel_values=pixel_values,
grid_sizes=grid_sizes,
merge_sizes=merge_sizes,
)
mm_features = self.get_model().mm_projector(mm_features)
return mm_features
def _get_valid_visual_tokens(
self,
mm_features: torch.FloatTensor,
batched_num_patches: torch.LongTensor,
modals: List[str],
):
valid_masks = []
for num_patches, modal in zip(batched_num_patches, modals):
valid_mask = torch.full((num_patches, ), modal != "text", dtype=torch.bool, device=mm_features.device)
valid_masks.append(valid_mask)
mm_features = mm_features[torch.cat(valid_masks)]
return mm_features
def _maybe_truncate_visual_tokens(
self,
mm_features: torch.FloatTensor,
compression_mask: torch.BoolTensor,
batched_num_patches: torch.LongTensor,
modals: List[str],
input_ids: torch.LongTensor,
position_ids: Optional[torch.LongTensor] = None,
):
if position_ids is None or mm_features.shape[0] == input_ids.eq(self.config.image_token_index).sum():
return mm_features, compression_mask
truncation_mask = []
for num_patches, modal in zip(batched_num_patches, modals):
if modal == "text":
truncation_mask.append(torch.ones((0,), dtype=torch.bool, device=input_ids.device))
else:
truncation_mask.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
seq_end_indices = torch.nonzero(position_ids == 0)[:, 0]
seq_end_indices = seq_end_indices[seq_end_indices > 0].tolist()+ [len(input_ids)]
seq_start_indices = [0] + seq_end_indices[:-1]
num_visual_tokens = [
input_ids[start:end].eq(self.config.image_token_index).sum()
for start, end in zip(seq_start_indices, seq_end_indices)
]
for n, mask in zip(num_visual_tokens, truncation_mask):
if len(mask) > 0:
mask[n:] = False
truncation_mask = torch.cat(truncation_mask)
return mm_features[truncation_mask], compression_mask[truncation_mask]
def _get_compression_mask(
self,
pixel_values: torch.FloatTensor,
batched_num_patches: torch.LongTensor,
grid_sizes: torch.LongTensor,
merge_sizes: torch.LongTensor,
modals: List[str],
threshold: float = 0.1,
min_tokens: int = 1,
) -> torch.BoolTensor:
batched_images = pixel_values.split(grid_sizes.prod(dim=1).tolist(), dim=0)
compression_masks = []
for images, num_patches, grid_size, merge_size, modal in zip(
batched_images, batched_num_patches, grid_sizes, merge_sizes, modals
):
t, h, w = grid_size
if modal == "image" or (modal == "video" and t == 1):
compression_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=images.device))
elif modal == "video":
# NOTE: video token compressor
images = images.view(t, (h // merge_size) * (w // merge_size), -1)
pixel_diff = images[1:] - images[:-1]
pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255
pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0)
mask = pixel_diff > threshold
padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0]
# mask[padding_ids, torch.randperm(min_tokens)] = 1
mask[padding_ids, :min_tokens] = 1
compression_masks.append(mask.flatten())
else:
# in case of psuedo image
compression_masks.append(torch.ones((0,), dtype=torch.bool, device=images.device))
return torch.cat(compression_masks)
def _compress_visual_tokens(
self,
compression_mask: torch.BoolTensor,
mm_features: torch.FloatTensor,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
):
mm_features = mm_features[compression_mask]
image_selected = (input_ids == self.config.image_token_index)
text_masks = torch.logical_not(image_selected)
text_masks[image_selected] = compression_mask
input_ids = input_ids[text_masks]
if attention_mask is not None:
attention_mask = attention_mask[text_masks]
if labels is not None:
labels = labels[text_masks]
if position_ids is not None:
# FIXME: assume the first position_id is always 0
position_ids = position_ids[text_masks]
pos_start = [0] + torch.nonzero(position_ids == 0)[:, 0].tolist()
pos_end = pos_start[1:] + [len(input_ids)]
position_ids = torch.cat([torch.arange(end - start, device=input_ids.device) for start, end in zip(pos_start, pos_end)])
return mm_features, input_ids, attention_mask, position_ids, labels
def prepare_inputs_labels_for_multimodal(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
grid_sizes: Optional[torch.LongTensor] = None,
merge_sizes: Optional[torch.LongTensor] = None,
modals: Optional[List[str]] = None,
):
vision_encoder = self.get_vision_encoder()
# NOTE: text-only situation
if vision_encoder is None or pixel_values is None or input_ids.shape[1] == 1:
return input_ids, attention_mask, position_ids, past_key_values, None, labels
# 1. flatten text inputs
B, N = input_ids.shape
input_ids = input_ids.view(B * N)
if attention_mask is not None:
attention_mask = attention_mask.view(B * N)
if position_ids is not None:
position_ids = position_ids.view(B * N)
if labels is not None:
labels = labels.view(B * N)
# 2. embed visual tokens
batched_num_patches = grid_sizes.prod(dim=1).div(merge_sizes ** 2).long()
mm_features = self.encode_images(pixel_values, grid_sizes, merge_sizes)
mm_features = self._get_valid_visual_tokens(mm_features, batched_num_patches, modals)
compression_mask = self._get_compression_mask(
pixel_values, batched_num_patches, grid_sizes, merge_sizes, modals
)
mm_features, compression_mask = self._maybe_truncate_visual_tokens(
mm_features, compression_mask, batched_num_patches, modals, input_ids, position_ids
)
# 3. compress visual tokens
if self.config.use_token_compression:
assert B == 1, "Token compression is only supported for batch_size=1"
mm_features, input_ids, attention_mask, labels, position_ids = self._compress_visual_tokens(
compression_mask, mm_features, input_ids, attention_mask, labels, position_ids
)
# 4. embed text tokens
inputs_embeds = self.get_model().embed_tokens(input_ids).clone()
# 5. replace multimodal tokens with features
image_selected = (input_ids == self.config.image_token_index)
inputs_embeds[image_selected] = inputs_embeds[image_selected] * 0.0 + mm_features
# 6. reshape back to batched format
C = inputs_embeds.shape[-1]
inputs_embeds = inputs_embeds.reshape(B, -1, C)
if attention_mask is not None:
attention_mask = attention_mask.view(B, -1)
if labels is not None:
labels = labels.view(B, -1)
if position_ids is not None:
position_ids = position_ids.view(B, -1)
return None, attention_mask, position_ids, past_key_values, inputs_embeds, labels
class Videollama3Qwen2ForCausalLM(Qwen2ForCausalLM, Videollama3MetaForCausalLM):
config_class = Videollama3Qwen2Config
def __init__(self, config, **kwargs):
super(Qwen2ForCausalLM, self).__init__(config)
self.model = Videollama3Qwen2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
# NOTE: arguments are copied from transformers==4.46.3
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
# multimodal inputs
pixel_values: Optional[torch.FloatTensor] = None,
grid_sizes: Optional[torch.LongTensor] = None,
merge_sizes: Optional[torch.LongTensor] = None,
modals: Optional[List[str]] = None,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
) = self.prepare_inputs_labels_for_multimodal(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
labels=labels,
pixel_values=pixel_values,
grid_sizes=grid_sizes,
merge_sizes=merge_sizes,
modals=modals,
)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
**loss_kwargs,
)
@torch.no_grad()
def generate(
self,
# multimodal inputs
pixel_values: Optional[torch.FloatTensor] = None,
grid_sizes: Optional[torch.LongTensor] = None,
merge_sizes: Optional[torch.LongTensor] = None,
modals: Optional[List[str]] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
input_ids = kwargs.pop("input_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
position_ids = kwargs.pop("position_ids", None)
past_key_values = kwargs.pop("past_key_values", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if pixel_values is not None:
(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
) = self.prepare_inputs_labels_for_multimodal(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
labels=None,
pixel_values=pixel_values,
grid_sizes=grid_sizes,
merge_sizes=merge_sizes,
modals=modals,
)
else:
inputs_embeds = self.get_model().embed_tokens(input_ids)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
_inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
_inputs['images'] = images
return _inputs
|