File size: 17,759 Bytes
5a918de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Adopted from https://github.com/haotian-liu/LLaVA.
# Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch VideoLLaMA3 model."""

import importlib.util
import os.path as osp
import re
from abc import ABC, abstractmethod
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint

from transformers import AutoModel, Qwen2ForCausalLM, Qwen2Model
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast

try:
    from .configuration_videollama3 import Videollama3Qwen2Config
except ModuleNotFoundError:
    spec = importlib.util.spec_from_file_location(
        "configuration_videollama3",
        osp.join(osp.dirname(__file__), "configuration_videollama3.py"),
    )
    configuration_videollama3 = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(configuration_videollama3)
    Videollama3Qwen2Config = getattr(
        configuration_videollama3,
        "Videollama3Qwen2Config",
    )


def build_mlp(depth, hidden_size, output_hidden_size):
    modules = [nn.Linear(hidden_size, output_hidden_size)]
    for _ in range(1, depth):
        modules.append(nn.GELU())
        modules.append(nn.Linear(output_hidden_size, output_hidden_size))
    return nn.Sequential(*modules)


def build_vision_projector(config, delay_load=False, **kwargs):
    # videollama3 projector only support image-wise operation now, i.e., prohibit the temporal aggregation
    projector_type = getattr(config, 'mm_projector_type', 'linear')
    if projector_type == "linear":
        # NOTE: for both linear and mlp2x_gelu projector type, mean pooling is adopted to aggreate video features
        return nn.Linear(config.mm_hidden_size, config.hidden_size)
    elif projector_type.startswith("mlp"):
        return MlpGeluProjector(config, projector_type)
    else:
        raise ValueError(f'Unknown projector type: {projector_type}')


class MlpGeluProjector(nn.Module):

    def __init__(self, config, projector_type):
        super().__init__()

        mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
        mlp_depth = int(mlp_gelu_match.group(1))

        self.readout = build_mlp(mlp_depth, config.vision_encoder_config.hidden_size, config.hidden_size)

    def forward(self, x):
        x = self.readout(x)
        return x


class Videollama3MetaModel:

    def __init__(self, config):
        super(Videollama3MetaModel, self).__init__(config)
        if config.vision_encoder is not None:
            self.vision_encoder = AutoModel.from_pretrained(
                config.vision_encoder,
                attn_implementation=self.config._attn_implementation,
                torch_dtype=self.dtype,
            )
            self.config.vision_encoder_config = self.vision_encoder.config
            self.config.vision_encoder = None
        elif config.vision_encoder_config is not None:
            self.vision_encoder = AutoModel.from_config(
                self.config.vision_encoder_config,
                attn_implementation=self.config._attn_implementation,
                torch_dtype=self.dtype,
            )
        else:
            raise ValueError("Vision encoder is not provided in config")
        self.mm_projector = build_vision_projector(config)

    def get_vision_encoder(self):
        return self.vision_encoder

    def get_mm_projector(self):
        return self.mm_projector


class Videollama3Qwen2Model(Videollama3MetaModel, Qwen2Model):

    config_class = Videollama3Qwen2Config

    def __init__(self, config: Videollama3Qwen2Config):
        super(Videollama3Qwen2Model, self).__init__(config)


class Videollama3MetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_encoder(self):
        return self.get_model().get_vision_encoder()

    def get_mm_projector(self):
        return self.get_model().get_mm_projector()

    def encode_images(
        self,
        pixel_values: torch.FloatTensor,
        grid_sizes: torch.LongTensor,
        merge_sizes: torch.LongTensor,
    ) -> torch.FloatTensor:
        mm_features = self.get_model().get_vision_encoder()(
            pixel_values=pixel_values,
            grid_sizes=grid_sizes,
            merge_sizes=merge_sizes,
        )
        mm_features = self.get_model().mm_projector(mm_features)
        return mm_features

    def _get_valid_visual_tokens(
        self,
        mm_features: torch.FloatTensor,
        batched_num_patches: torch.LongTensor,
        modals: List[str],
    ):
        valid_masks = []
        for num_patches, modal in zip(batched_num_patches, modals):
            valid_mask = torch.full((num_patches, ), modal != "text", dtype=torch.bool, device=mm_features.device)
            valid_masks.append(valid_mask)
        mm_features = mm_features[torch.cat(valid_masks)]
        return mm_features

    def _maybe_truncate_visual_tokens(
        self,
        mm_features: torch.FloatTensor,
        compression_mask: torch.BoolTensor,
        batched_num_patches: torch.LongTensor,
        modals: List[str],
        input_ids: torch.LongTensor,
        position_ids: Optional[torch.LongTensor] = None,
    ):
        if position_ids is None or mm_features.shape[0] == input_ids.eq(self.config.image_token_index).sum():
            return mm_features, compression_mask

        truncation_mask = []
        for num_patches, modal in zip(batched_num_patches, modals):
            if modal == "text":
                truncation_mask.append(torch.ones((0,), dtype=torch.bool, device=input_ids.device))
            else:
                truncation_mask.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))

        seq_end_indices = torch.nonzero(position_ids == 0)[:, 0]
        seq_end_indices = seq_end_indices[seq_end_indices > 0].tolist()+ [len(input_ids)]
        seq_start_indices = [0] + seq_end_indices[:-1]
        num_visual_tokens = [
            input_ids[start:end].eq(self.config.image_token_index).sum()
            for start, end in zip(seq_start_indices, seq_end_indices)
        ]

        for n, mask in zip(num_visual_tokens, truncation_mask):
            if len(mask) > 0:
                mask[n:] = False
        truncation_mask = torch.cat(truncation_mask)

        return mm_features[truncation_mask], compression_mask[truncation_mask]

    def _get_compression_mask(
        self,
        pixel_values: torch.FloatTensor,
        batched_num_patches: torch.LongTensor,
        grid_sizes: torch.LongTensor,
        merge_sizes: torch.LongTensor,
        modals: List[str],
        threshold: float = 0.1,
        min_tokens: int = 1,
    ) -> torch.BoolTensor:
        batched_images = pixel_values.split(grid_sizes.prod(dim=1).tolist(), dim=0)
        compression_masks = []

        for images, num_patches, grid_size, merge_size, modal in zip(
            batched_images, batched_num_patches, grid_sizes, merge_sizes, modals
        ):
            t, h, w = grid_size
            if modal == "image" or (modal == "video" and t == 1):
                compression_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=images.device))

            elif modal == "video":
                # NOTE: video token compressor
                images = images.view(t, (h // merge_size) * (w // merge_size), -1)

                pixel_diff = images[1:] - images[:-1]
                pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255
                pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0)
                mask = pixel_diff > threshold
                padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0]
                # mask[padding_ids, torch.randperm(min_tokens)] = 1
                mask[padding_ids, :min_tokens] = 1
                compression_masks.append(mask.flatten())

            else:
                # in case of psuedo image
                compression_masks.append(torch.ones((0,), dtype=torch.bool, device=images.device))

        return torch.cat(compression_masks)

    def _compress_visual_tokens(
        self,
        compression_mask: torch.BoolTensor,
        mm_features: torch.FloatTensor,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
    ):
        mm_features = mm_features[compression_mask]
        image_selected = (input_ids == self.config.image_token_index)

        text_masks = torch.logical_not(image_selected)
        text_masks[image_selected] = compression_mask
        input_ids = input_ids[text_masks]

        if attention_mask is not None:
            attention_mask = attention_mask[text_masks]
        if labels is not None:
            labels = labels[text_masks]
        if position_ids is not None:
            # FIXME: assume the first position_id is always 0
            position_ids = position_ids[text_masks]
            pos_start = [0] + torch.nonzero(position_ids == 0)[:, 0].tolist()
            pos_end = pos_start[1:] + [len(input_ids)]
            position_ids = torch.cat([torch.arange(end - start, device=input_ids.device) for start, end in zip(pos_start, pos_end)])

        return mm_features, input_ids, attention_mask, position_ids, labels

    def prepare_inputs_labels_for_multimodal(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        grid_sizes: Optional[torch.LongTensor] = None,
        merge_sizes: Optional[torch.LongTensor] = None,
        modals: Optional[List[str]] = None,
    ):
        vision_encoder = self.get_vision_encoder()
        # NOTE: text-only situation
        if vision_encoder is None or pixel_values is None or input_ids.shape[1] == 1:
            return input_ids, attention_mask, position_ids, past_key_values, None, labels

        # 1. flatten text inputs
        B, N = input_ids.shape
        input_ids = input_ids.view(B * N)
        if attention_mask is not None:
            attention_mask = attention_mask.view(B * N)
        if position_ids is not None:
            position_ids = position_ids.view(B * N)
        if labels is not None:
            labels = labels.view(B * N)

        # 2. embed visual tokens
        batched_num_patches = grid_sizes.prod(dim=1).div(merge_sizes ** 2).long()
        mm_features = self.encode_images(pixel_values, grid_sizes, merge_sizes)
        mm_features = self._get_valid_visual_tokens(mm_features, batched_num_patches, modals)

        compression_mask = self._get_compression_mask(
            pixel_values, batched_num_patches, grid_sizes, merge_sizes, modals
        )
        mm_features, compression_mask = self._maybe_truncate_visual_tokens(
            mm_features, compression_mask, batched_num_patches, modals, input_ids, position_ids
        )

        # 3. compress visual tokens
        if self.config.use_token_compression:
            assert B == 1, "Token compression is only supported for batch_size=1"
            mm_features, input_ids, attention_mask, labels, position_ids = self._compress_visual_tokens(
                compression_mask, mm_features, input_ids, attention_mask, labels, position_ids
            )

        # 4. embed text tokens
        inputs_embeds = self.get_model().embed_tokens(input_ids).clone()

        # 5. replace multimodal tokens with features
        image_selected = (input_ids == self.config.image_token_index)
        inputs_embeds[image_selected] = inputs_embeds[image_selected] * 0.0 + mm_features   

        # 6. reshape back to batched format
        C = inputs_embeds.shape[-1]
        inputs_embeds = inputs_embeds.reshape(B, -1, C)
        if attention_mask is not None:
            attention_mask = attention_mask.view(B, -1)
        if labels is not None:
            labels = labels.view(B, -1)
        if position_ids is not None:
            position_ids = position_ids.view(B, -1)

        return None, attention_mask, position_ids, past_key_values, inputs_embeds, labels


class Videollama3Qwen2ForCausalLM(Qwen2ForCausalLM, Videollama3MetaForCausalLM):

    config_class = Videollama3Qwen2Config

    def __init__(self, config, **kwargs):
        super(Qwen2ForCausalLM, self).__init__(config)
        self.model = Videollama3Qwen2Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    # NOTE: arguments are copied from transformers==4.46.3
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
        # multimodal inputs
        pixel_values: Optional[torch.FloatTensor] = None,
        grid_sizes: Optional[torch.LongTensor] = None,
        merge_sizes: Optional[torch.LongTensor] = None,
        modals: Optional[List[str]] = None,
        **loss_kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if inputs_embeds is None:
            (
                input_ids,
                attention_mask,
                position_ids,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                labels=labels,
                pixel_values=pixel_values,
                grid_sizes=grid_sizes,
                merge_sizes=merge_sizes,
                modals=modals,
            )

        return super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
            **loss_kwargs,
        )

    @torch.no_grad()
    def generate(
        self,
        # multimodal inputs
        pixel_values: Optional[torch.FloatTensor] = None,
        grid_sizes: Optional[torch.LongTensor] = None,
        merge_sizes: Optional[torch.LongTensor] = None,
        modals: Optional[List[str]] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        input_ids = kwargs.pop("input_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        position_ids = kwargs.pop("position_ids", None)
        past_key_values = kwargs.pop("past_key_values", None)

        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if pixel_values is not None:
            (
                input_ids,
                attention_mask,
                position_ids,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                labels=None,
                pixel_values=pixel_values,
                grid_sizes=grid_sizes,
                merge_sizes=merge_sizes,
                modals=modals,
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(input_ids)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        _inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            _inputs['images'] = images
        return _inputs