ClownRat commited on
Commit
6fde53b
·
verified ·
1 Parent(s): f4ad318

Upload Videollama3Qwen2ForCausalLM

Browse files
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Videollama3Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_videollama3.Videollama3Qwen2Config",
8
+ "AutoModelForCausalLM": "modeling_videollama3.Videollama3Qwen2ForCausalLM"
9
+ },
10
+ "bos_token_id": 151643,
11
+ "eos_token_id": 151645,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 1536,
14
+ "image_token_index": 151665,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 8960,
17
+ "max_position_embeddings": 32768,
18
+ "max_window_layers": 21,
19
+ "mm_projector_type": "mlp2x_gelu",
20
+ "model_type": "videollama3_qwen2",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 28,
23
+ "num_key_value_heads": 2,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 1000000.0,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": true,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.46.3",
31
+ "use_cache": false,
32
+ "use_sliding_window": false,
33
+ "use_token_compression": true,
34
+ "vision_encoder": null,
35
+ "vision_encoder_config": {
36
+ "hidden_size": 1152,
37
+ "intermediate_size": 4304,
38
+ "model_type": "videollama3_vision_encoder",
39
+ "num_attention_heads": 16,
40
+ "num_hidden_layers": 27,
41
+ "patch_size": 14
42
+ },
43
+ "vocab_size": 151936
44
+ }
configuration_videollama3.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """VideoLLaMA3 model configuration."""
2
+
3
+ import importlib.util
4
+ import os.path as osp
5
+ from typing import Optional, Dict, Any
6
+
7
+ from transformers import AutoConfig, AutoModel, PretrainedConfig, Qwen2Config
8
+
9
+ try:
10
+ from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig
11
+ except ModuleNotFoundError:
12
+ spec = importlib.util.spec_from_file_location(
13
+ "configuration_videollama3_encoder",
14
+ osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"),
15
+ )
16
+ configuration_videollama3_encoder = importlib.util.module_from_spec(spec)
17
+ spec.loader.exec_module(configuration_videollama3_encoder)
18
+ Videollama3VisionEncoderConfig = getattr(
19
+ configuration_videollama3_encoder,
20
+ "Videollama3VisionEncoderConfig",
21
+ )
22
+
23
+ try:
24
+ from .modeling_videollama3_encoder import Videollama3VisionEncoderModel
25
+ except ModuleNotFoundError:
26
+ spec = importlib.util.spec_from_file_location(
27
+ "modeling_videollama3_encoder",
28
+ osp.join(osp.dirname(__file__), "modeling_videollama3_encoder.py"),
29
+ )
30
+ modeling_videollama3_encoder = importlib.util.module_from_spec(spec)
31
+ spec.loader.exec_module(modeling_videollama3_encoder)
32
+ Videollama3VisionEncoderModel = getattr(
33
+ modeling_videollama3_encoder,
34
+ "Videollama3VisionEncoderModel",
35
+ )
36
+
37
+ AutoConfig.register("videollama3_vision_encoder", Videollama3VisionEncoderConfig)
38
+ AutoModel.register(Videollama3VisionEncoderConfig, Videollama3VisionEncoderModel)
39
+
40
+
41
+ class Videollama3Qwen2Config(Qwen2Config):
42
+
43
+ model_type = "videollama3_qwen2"
44
+ sub_configs = {"vision_encoder_config": Videollama3VisionEncoderConfig}
45
+
46
+ def __init__(
47
+ self,
48
+ vision_encoder: Optional[str] = None,
49
+ vision_encoder_config: Dict[str, Any] = {},
50
+ mm_projector_type: str = "mlp2x_gelu",
51
+ use_token_compression: bool = True,
52
+ image_token_index: int = -1,
53
+ **kwargs,
54
+ ):
55
+ super().__init__(**kwargs)
56
+ self.model_type = "videollama3_qwen2"
57
+
58
+ self.vision_encoder = vision_encoder
59
+ if vision_encoder_config is not None and not isinstance(vision_encoder_config, PretrainedConfig):
60
+ vision_encoder_config = Videollama3VisionEncoderConfig(**vision_encoder_config)
61
+ self.vision_encoder_config = vision_encoder_config
62
+
63
+ self.mm_projector_type = mm_projector_type
64
+ self.use_token_compression = use_token_compression
65
+ self.image_token_index = image_token_index
configuration_videollama3_encoder.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """VideoLLaMA3 vision encoder model configuration."""
2
+
3
+ from transformers import PretrainedConfig
4
+
5
+
6
+ class Videollama3VisionEncoderConfig(PretrainedConfig):
7
+
8
+ model_type = "videollama3_vision_encoder"
9
+
10
+ def __init__(
11
+ self,
12
+ hidden_size=768,
13
+ intermediate_size=3072,
14
+ num_hidden_layers=12,
15
+ num_attention_heads=12,
16
+ num_channels=3,
17
+ patch_size=16,
18
+ hidden_act="gelu_pytorch_tanh",
19
+ layer_norm_eps=1e-6,
20
+ attention_dropout=0.0,
21
+ **kwargs,
22
+ ):
23
+ super().__init__(**kwargs)
24
+
25
+ self.hidden_size = hidden_size
26
+ self.intermediate_size = intermediate_size
27
+ self.num_hidden_layers = num_hidden_layers
28
+ self.num_attention_heads = num_attention_heads
29
+ self.num_channels = num_channels
30
+ self.patch_size = patch_size
31
+ self.attention_dropout = attention_dropout
32
+ self.layer_norm_eps = layer_norm_eps
33
+ self.hidden_act = hidden_act
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.3"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1baf031cd8c399646c70963c002962b9fa1a445fff295d657bf4eafbb29ab55
3
+ size 3920084208
modeling_videollama3.py ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adopted from https://github.com/haotian-liu/LLaVA.
2
+ # Below is the original copyright:
3
+ # Copyright 2023 Haotian Liu
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch VideoLLaMA3 model."""
17
+
18
+ import importlib.util
19
+ import os.path as osp
20
+ import re
21
+ from abc import ABC, abstractmethod
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn as nn
26
+ import torch.utils.checkpoint
27
+
28
+ from transformers import AutoModel, Qwen2ForCausalLM, Qwen2Model
29
+ from transformers.generation.utils import GenerateOutput
30
+ from transformers.modeling_outputs import CausalLMOutputWithPast
31
+
32
+ try:
33
+ from .configuration_videollama3 import Videollama3Qwen2Config
34
+ except ModuleNotFoundError:
35
+ spec = importlib.util.spec_from_file_location(
36
+ "configuration_videollama3",
37
+ osp.join(osp.dirname(__file__), "configuration_videollama3.py"),
38
+ )
39
+ configuration_videollama3 = importlib.util.module_from_spec(spec)
40
+ spec.loader.exec_module(configuration_videollama3)
41
+ Videollama3Qwen2Config = getattr(
42
+ configuration_videollama3,
43
+ "Videollama3Qwen2Config",
44
+ )
45
+
46
+
47
+ def build_mlp(depth, hidden_size, output_hidden_size):
48
+ modules = [nn.Linear(hidden_size, output_hidden_size)]
49
+ for _ in range(1, depth):
50
+ modules.append(nn.GELU())
51
+ modules.append(nn.Linear(output_hidden_size, output_hidden_size))
52
+ return nn.Sequential(*modules)
53
+
54
+
55
+ def build_vision_projector(config, delay_load=False, **kwargs):
56
+ # videollama3 projector only support image-wise operation now, i.e., prohibit the temporal aggregation
57
+ projector_type = getattr(config, 'mm_projector_type', 'linear')
58
+ if projector_type == "linear":
59
+ # NOTE: for both linear and mlp2x_gelu projector type, mean pooling is adopted to aggreate video features
60
+ return nn.Linear(config.mm_hidden_size, config.hidden_size)
61
+ elif projector_type.startswith("mlp"):
62
+ return MlpGeluProjector(config, projector_type)
63
+ else:
64
+ raise ValueError(f'Unknown projector type: {projector_type}')
65
+
66
+
67
+ class MlpGeluProjector(nn.Module):
68
+
69
+ def __init__(self, config, projector_type):
70
+ super().__init__()
71
+
72
+ mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
73
+ mlp_depth = int(mlp_gelu_match.group(1))
74
+
75
+ self.readout = build_mlp(mlp_depth, config.vision_encoder_config.hidden_size, config.hidden_size)
76
+
77
+ def forward(self, x):
78
+ x = self.readout(x)
79
+ return x
80
+
81
+
82
+ class Videollama3MetaModel:
83
+
84
+ def __init__(self, config):
85
+ super(Videollama3MetaModel, self).__init__(config)
86
+ if config.vision_encoder is not None:
87
+ self.vision_encoder = AutoModel.from_pretrained(
88
+ config.vision_encoder,
89
+ attn_implementation=self.config._attn_implementation,
90
+ torch_dtype=self.dtype,
91
+ )
92
+ self.config.vision_encoder_config = self.vision_encoder.config
93
+ self.config.vision_encoder = None
94
+ elif config.vision_encoder_config is not None:
95
+ self.vision_encoder = AutoModel.from_config(
96
+ self.config.vision_encoder_config,
97
+ attn_implementation=self.config._attn_implementation,
98
+ torch_dtype=self.dtype,
99
+ )
100
+ else:
101
+ raise ValueError("Vision encoder is not provided in config")
102
+ self.mm_projector = build_vision_projector(config)
103
+
104
+ def get_vision_encoder(self):
105
+ return self.vision_encoder
106
+
107
+ def get_mm_projector(self):
108
+ return self.mm_projector
109
+
110
+
111
+ class Videollama3Qwen2Model(Videollama3MetaModel, Qwen2Model):
112
+
113
+ config_class = Videollama3Qwen2Config
114
+
115
+ def __init__(self, config: Videollama3Qwen2Config):
116
+ super(Videollama3Qwen2Model, self).__init__(config)
117
+
118
+
119
+ class Videollama3MetaForCausalLM(ABC):
120
+
121
+ @abstractmethod
122
+ def get_model(self):
123
+ pass
124
+
125
+ def get_vision_encoder(self):
126
+ return self.get_model().get_vision_encoder()
127
+
128
+ def get_mm_projector(self):
129
+ return self.get_model().get_mm_projector()
130
+
131
+ def encode_images(
132
+ self,
133
+ pixel_values: torch.FloatTensor,
134
+ grid_sizes: torch.LongTensor,
135
+ merge_sizes: torch.LongTensor,
136
+ ) -> torch.FloatTensor:
137
+ mm_features = self.get_model().get_vision_encoder()(
138
+ pixel_values=pixel_values,
139
+ grid_sizes=grid_sizes,
140
+ merge_sizes=merge_sizes,
141
+ )
142
+ mm_features = self.get_model().mm_projector(mm_features)
143
+ return mm_features
144
+
145
+ def _get_valid_visual_tokens(
146
+ self,
147
+ mm_features: torch.FloatTensor,
148
+ batched_num_patches: torch.LongTensor,
149
+ modals: List[str],
150
+ ):
151
+ valid_masks = []
152
+ for num_patches, modal in zip(batched_num_patches, modals):
153
+ valid_mask = torch.full((num_patches, ), modal != "text", dtype=torch.bool, device=mm_features.device)
154
+ valid_masks.append(valid_mask)
155
+ mm_features = mm_features[torch.cat(valid_masks)]
156
+ return mm_features
157
+
158
+ def _maybe_truncate_visual_tokens(
159
+ self,
160
+ mm_features: torch.FloatTensor,
161
+ compression_mask: torch.BoolTensor,
162
+ batched_num_patches: torch.LongTensor,
163
+ modals: List[str],
164
+ input_ids: torch.LongTensor,
165
+ position_ids: Optional[torch.LongTensor] = None,
166
+ ):
167
+ if position_ids is None or mm_features.shape[0] == input_ids.eq(self.config.image_token_index).sum():
168
+ return mm_features, compression_mask
169
+
170
+ truncation_mask = []
171
+ for num_patches, modal in zip(batched_num_patches, modals):
172
+ if modal == "text":
173
+ truncation_mask.append(torch.ones((0,), dtype=torch.bool, device=input_ids.device))
174
+ else:
175
+ truncation_mask.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
176
+
177
+ seq_end_indices = torch.nonzero(position_ids == 0)[:, 0]
178
+ seq_end_indices = seq_end_indices[seq_end_indices > 0].tolist()+ [len(input_ids)]
179
+ seq_start_indices = [0] + seq_end_indices[:-1]
180
+ num_visual_tokens = [
181
+ input_ids[start:end].eq(self.config.image_token_index).sum()
182
+ for start, end in zip(seq_start_indices, seq_end_indices)
183
+ ]
184
+
185
+ for n, mask in zip(num_visual_tokens, truncation_mask):
186
+ if len(mask) > 0:
187
+ mask[n:] = False
188
+ truncation_mask = torch.cat(truncation_mask)
189
+
190
+ return mm_features[truncation_mask], compression_mask[truncation_mask]
191
+
192
+ def _get_compression_mask(
193
+ self,
194
+ pixel_values: torch.FloatTensor,
195
+ batched_num_patches: torch.LongTensor,
196
+ grid_sizes: torch.LongTensor,
197
+ merge_sizes: torch.LongTensor,
198
+ modals: List[str],
199
+ threshold: float = 0.1,
200
+ min_tokens: int = 1,
201
+ ) -> torch.BoolTensor:
202
+ batched_images = pixel_values.split(grid_sizes.prod(dim=1).tolist(), dim=0)
203
+ compression_masks = []
204
+
205
+ for images, num_patches, grid_size, merge_size, modal in zip(
206
+ batched_images, batched_num_patches, grid_sizes, merge_sizes, modals
207
+ ):
208
+ t, h, w = grid_size
209
+ if modal == "image" or (modal == "video" and t == 1):
210
+ compression_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=images.device))
211
+
212
+ elif modal == "video":
213
+ # NOTE: video token compressor
214
+ images = images.view(t, (h // merge_size) * (w // merge_size), -1)
215
+
216
+ pixel_diff = images[1:] - images[:-1]
217
+ pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255
218
+ pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0)
219
+ mask = pixel_diff > threshold
220
+ padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0]
221
+ # mask[padding_ids, torch.randperm(min_tokens)] = 1
222
+ mask[padding_ids, :min_tokens] = 1
223
+ compression_masks.append(mask.flatten())
224
+
225
+ else:
226
+ # in case of psuedo image
227
+ compression_masks.append(torch.ones((0,), dtype=torch.bool, device=images.device))
228
+
229
+ return torch.cat(compression_masks)
230
+
231
+ def _compress_visual_tokens(
232
+ self,
233
+ compression_mask: torch.BoolTensor,
234
+ mm_features: torch.FloatTensor,
235
+ input_ids: torch.LongTensor,
236
+ attention_mask: Optional[torch.Tensor] = None,
237
+ position_ids: Optional[torch.LongTensor] = None,
238
+ labels: Optional[torch.LongTensor] = None,
239
+ ):
240
+ mm_features = mm_features[compression_mask]
241
+ image_selected = (input_ids == self.config.image_token_index)
242
+
243
+ text_masks = torch.logical_not(image_selected)
244
+ text_masks[image_selected] = compression_mask
245
+ input_ids = input_ids[text_masks]
246
+
247
+ if attention_mask is not None:
248
+ attention_mask = attention_mask[text_masks]
249
+ if labels is not None:
250
+ labels = labels[text_masks]
251
+ if position_ids is not None:
252
+ # FIXME: assume the first position_id is always 0
253
+ position_ids = position_ids[text_masks]
254
+ pos_start = [0] + torch.nonzero(position_ids == 0)[:, 0].tolist()
255
+ pos_end = pos_start[1:] + [len(input_ids)]
256
+ position_ids = torch.cat([torch.arange(end - start, device=input_ids.device) for start, end in zip(pos_start, pos_end)])
257
+
258
+ return mm_features, input_ids, attention_mask, position_ids, labels
259
+
260
+ def prepare_inputs_labels_for_multimodal(
261
+ self,
262
+ input_ids: torch.LongTensor = None,
263
+ attention_mask: Optional[torch.Tensor] = None,
264
+ position_ids: Optional[torch.LongTensor] = None,
265
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
266
+ labels: Optional[torch.LongTensor] = None,
267
+ pixel_values: Optional[torch.FloatTensor] = None,
268
+ grid_sizes: Optional[torch.LongTensor] = None,
269
+ merge_sizes: Optional[torch.LongTensor] = None,
270
+ modals: Optional[List[str]] = None,
271
+ ):
272
+ vision_encoder = self.get_vision_encoder()
273
+ # NOTE: text-only situation
274
+ if vision_encoder is None or pixel_values is None or input_ids.shape[1] == 1:
275
+ return input_ids, attention_mask, position_ids, past_key_values, None, labels
276
+
277
+ # 1. flatten text inputs
278
+ B, N = input_ids.shape
279
+ input_ids = input_ids.view(B * N)
280
+ if attention_mask is not None:
281
+ attention_mask = attention_mask.view(B * N)
282
+ if position_ids is not None:
283
+ position_ids = position_ids.view(B * N)
284
+ if labels is not None:
285
+ labels = labels.view(B * N)
286
+
287
+ # 2. embed visual tokens
288
+ batched_num_patches = grid_sizes.prod(dim=1).div(merge_sizes ** 2).long()
289
+ mm_features = self.encode_images(pixel_values, grid_sizes, merge_sizes)
290
+ mm_features = self._get_valid_visual_tokens(mm_features, batched_num_patches, modals)
291
+
292
+ compression_mask = self._get_compression_mask(
293
+ pixel_values, batched_num_patches, grid_sizes, merge_sizes, modals
294
+ )
295
+ mm_features, compression_mask = self._maybe_truncate_visual_tokens(
296
+ mm_features, compression_mask, batched_num_patches, modals, input_ids, position_ids
297
+ )
298
+
299
+ # 3. compress visual tokens
300
+ if self.config.use_token_compression:
301
+ assert B == 1, "Token compression is only supported for batch_size=1"
302
+ mm_features, input_ids, attention_mask, labels, position_ids = self._compress_visual_tokens(
303
+ compression_mask, mm_features, input_ids, attention_mask, labels, position_ids
304
+ )
305
+
306
+ # 4. embed text tokens
307
+ inputs_embeds = self.get_model().embed_tokens(input_ids).clone()
308
+
309
+ # 5. replace multimodal tokens with features
310
+ image_selected = (input_ids == self.config.image_token_index)
311
+ inputs_embeds[image_selected] = inputs_embeds[image_selected] * 0.0 + mm_features
312
+
313
+ # 6. reshape back to batched format
314
+ C = inputs_embeds.shape[-1]
315
+ inputs_embeds = inputs_embeds.reshape(B, -1, C)
316
+ if attention_mask is not None:
317
+ attention_mask = attention_mask.view(B, -1)
318
+ if labels is not None:
319
+ labels = labels.view(B, -1)
320
+ if position_ids is not None:
321
+ position_ids = position_ids.view(B, -1)
322
+
323
+ return None, attention_mask, position_ids, past_key_values, inputs_embeds, labels
324
+
325
+
326
+ class Videollama3Qwen2ForCausalLM(Qwen2ForCausalLM, Videollama3MetaForCausalLM):
327
+
328
+ config_class = Videollama3Qwen2Config
329
+
330
+ def __init__(self, config, **kwargs):
331
+ super(Qwen2ForCausalLM, self).__init__(config)
332
+ self.model = Videollama3Qwen2Model(config)
333
+ self.vocab_size = config.vocab_size
334
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
335
+
336
+ # Initialize weights and apply final processing
337
+ self.post_init()
338
+
339
+ def get_model(self):
340
+ return self.model
341
+
342
+ # NOTE: arguments are copied from transformers==4.46.3
343
+ def forward(
344
+ self,
345
+ input_ids: torch.LongTensor = None,
346
+ attention_mask: Optional[torch.Tensor] = None,
347
+ position_ids: Optional[torch.LongTensor] = None,
348
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
349
+ inputs_embeds: Optional[torch.FloatTensor] = None,
350
+ labels: Optional[torch.LongTensor] = None,
351
+ use_cache: Optional[bool] = None,
352
+ output_attentions: Optional[bool] = None,
353
+ output_hidden_states: Optional[bool] = None,
354
+ return_dict: Optional[bool] = None,
355
+ cache_position: Optional[torch.LongTensor] = None,
356
+ num_logits_to_keep: int = 0,
357
+ # multimodal inputs
358
+ pixel_values: Optional[torch.FloatTensor] = None,
359
+ grid_sizes: Optional[torch.LongTensor] = None,
360
+ merge_sizes: Optional[torch.LongTensor] = None,
361
+ modals: Optional[List[str]] = None,
362
+ **loss_kwargs,
363
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
364
+ if inputs_embeds is None:
365
+ (
366
+ input_ids,
367
+ attention_mask,
368
+ position_ids,
369
+ past_key_values,
370
+ inputs_embeds,
371
+ labels,
372
+ ) = self.prepare_inputs_labels_for_multimodal(
373
+ input_ids=input_ids,
374
+ attention_mask=attention_mask,
375
+ position_ids=position_ids,
376
+ past_key_values=past_key_values,
377
+ labels=labels,
378
+ pixel_values=pixel_values,
379
+ grid_sizes=grid_sizes,
380
+ merge_sizes=merge_sizes,
381
+ modals=modals,
382
+ )
383
+
384
+ return super().forward(
385
+ input_ids=input_ids,
386
+ attention_mask=attention_mask,
387
+ position_ids=position_ids,
388
+ past_key_values=past_key_values,
389
+ inputs_embeds=inputs_embeds,
390
+ labels=labels,
391
+ use_cache=use_cache,
392
+ output_attentions=output_attentions,
393
+ output_hidden_states=output_hidden_states,
394
+ return_dict=return_dict,
395
+ cache_position=cache_position,
396
+ num_logits_to_keep=num_logits_to_keep,
397
+ **loss_kwargs,
398
+ )
399
+
400
+ @torch.no_grad()
401
+ def generate(
402
+ self,
403
+ # multimodal inputs
404
+ pixel_values: Optional[torch.FloatTensor] = None,
405
+ grid_sizes: Optional[torch.LongTensor] = None,
406
+ merge_sizes: Optional[torch.LongTensor] = None,
407
+ modals: Optional[List[str]] = None,
408
+ **kwargs,
409
+ ) -> Union[GenerateOutput, torch.LongTensor]:
410
+ input_ids = kwargs.pop("input_ids", None)
411
+ attention_mask = kwargs.pop("attention_mask", None)
412
+ position_ids = kwargs.pop("position_ids", None)
413
+ past_key_values = kwargs.pop("past_key_values", None)
414
+
415
+ if "inputs_embeds" in kwargs:
416
+ raise NotImplementedError("`inputs_embeds` is not supported")
417
+
418
+ if pixel_values is not None:
419
+ (
420
+ input_ids,
421
+ attention_mask,
422
+ position_ids,
423
+ past_key_values,
424
+ inputs_embeds,
425
+ labels,
426
+ ) = self.prepare_inputs_labels_for_multimodal(
427
+ input_ids=input_ids,
428
+ attention_mask=attention_mask,
429
+ position_ids=position_ids,
430
+ past_key_values=past_key_values,
431
+ labels=None,
432
+ pixel_values=pixel_values,
433
+ grid_sizes=grid_sizes,
434
+ merge_sizes=merge_sizes,
435
+ modals=modals,
436
+ )
437
+ else:
438
+ inputs_embeds = self.get_model().embed_tokens(input_ids)
439
+
440
+ return super().generate(
441
+ position_ids=position_ids,
442
+ attention_mask=attention_mask,
443
+ inputs_embeds=inputs_embeds,
444
+ **kwargs
445
+ )
446
+
447
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
448
+ images = kwargs.pop("images", None)
449
+ _inputs = super().prepare_inputs_for_generation(
450
+ input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
451
+ )
452
+ if images is not None:
453
+ _inputs['images'] = images
454
+ return _inputs
modeling_videollama3_encoder.py ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py.
2
+ # Below is the original copyright:
3
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """PyTorch VideoLLaMA3 vision encoder model."""
22
+
23
+ import importlib.util
24
+ import os.path as osp
25
+ import math
26
+ import warnings
27
+
28
+ import torch
29
+ import torch.nn as nn
30
+ import torch.nn.functional as F
31
+ import torch.utils.checkpoint
32
+ from torch.nn.init import _calculate_fan_in_and_fan_out
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import is_flash_attn_2_available
37
+
38
+ if is_flash_attn_2_available():
39
+ from flash_attn import flash_attn_varlen_func
40
+ else:
41
+ flash_attn_varlen_func = None
42
+
43
+ try:
44
+ from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig
45
+ except ImportError:
46
+ spec = importlib.util.spec_from_file_location(
47
+ "configuration_videollama3_encoder",
48
+ osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"),
49
+ )
50
+ configuration_videollama3_encoder = importlib.util.module_from_spec(spec)
51
+ spec.loader.exec_module(configuration_videollama3_encoder)
52
+ Videollama3VisionEncoderConfig = getattr(
53
+ configuration_videollama3_encoder,
54
+ "Videollama3VisionEncoderConfig",
55
+ )
56
+
57
+
58
+ def _trunc_normal_(tensor, mean, std, a, b):
59
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
60
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
61
+ def norm_cdf(x):
62
+ # Computes standard normal cumulative distribution function
63
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
64
+
65
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
66
+ warnings.warn(
67
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
68
+ "The distribution of values may be incorrect.",
69
+ stacklevel=2,
70
+ )
71
+
72
+ # Values are generated by using a truncated uniform distribution and
73
+ # then using the inverse CDF for the normal distribution.
74
+ # Get upper and lower cdf values
75
+ l = norm_cdf((a - mean) / std)
76
+ u = norm_cdf((b - mean) / std)
77
+
78
+ # Uniformly fill tensor with values from [l, u], then translate to
79
+ # [2l-1, 2u-1].
80
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
81
+
82
+ # Use inverse cdf transform for normal distribution to get truncated
83
+ # standard normal
84
+ tensor.erfinv_()
85
+
86
+ # Transform to proper mean, std
87
+ tensor.mul_(std * math.sqrt(2.0))
88
+ tensor.add_(mean)
89
+
90
+ # Clamp to ensure it's in the proper range
91
+ tensor.clamp_(min=a, max=b)
92
+
93
+
94
+ def trunc_normal_tf_(
95
+ tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
96
+ ) -> torch.Tensor:
97
+ """Fills the input Tensor with values drawn from a truncated
98
+ normal distribution. The values are effectively drawn from the
99
+ normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
100
+ with values outside :math:`[a, b]` redrawn until they are within
101
+ the bounds. The method used for generating the random values works
102
+ best when :math:`a \\leq \text{mean} \\leq b`.
103
+
104
+ NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
105
+ bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
106
+ and the result is subsequently scaled and shifted by the mean and std args.
107
+
108
+ Args:
109
+ tensor: an n-dimensional `torch.Tensor`
110
+ mean: the mean of the normal distribution
111
+ std: the standard deviation of the normal distribution
112
+ a: the minimum cutoff value
113
+ b: the maximum cutoff value
114
+ """
115
+ with torch.no_grad():
116
+ _trunc_normal_(tensor, 0, 1.0, a, b)
117
+ tensor.mul_(std).add_(mean)
118
+
119
+
120
+ def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
121
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
122
+ if mode == "fan_in":
123
+ denom = fan_in
124
+ elif mode == "fan_out":
125
+ denom = fan_out
126
+ elif mode == "fan_avg":
127
+ denom = (fan_in + fan_out) / 2
128
+
129
+ variance = scale / denom
130
+
131
+ if distribution == "truncated_normal":
132
+ # constant is stddev of standard normal truncated to (-2, 2)
133
+ trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
134
+ elif distribution == "normal":
135
+ with torch.no_grad():
136
+ tensor.normal_(std=math.sqrt(variance))
137
+ elif distribution == "uniform":
138
+ bound = math.sqrt(3 * variance)
139
+ with torch.no_grad():
140
+ tensor.uniform_(-bound, bound)
141
+ else:
142
+ raise ValueError(f"invalid distribution {distribution}")
143
+
144
+
145
+ def lecun_normal_(tensor):
146
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
147
+
148
+
149
+ def default_flax_embed_init(tensor):
150
+ variance_scaling_(tensor, mode="fan_in", distribution="normal")
151
+
152
+
153
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
154
+ def rotate_half(x):
155
+ """Rotates half the hidden dims of the input."""
156
+ x1 = x[..., : x.shape[-1] // 2]
157
+ x2 = x[..., x.shape[-1] // 2 :]
158
+ return torch.cat((-x2, x1), dim=-1)
159
+
160
+
161
+ def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
162
+ orig_dtype = tensor.dtype
163
+ tensor = tensor.float()
164
+ cos = freqs.cos()
165
+ sin = freqs.sin()
166
+ cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
167
+ sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
168
+ output = (tensor * cos) + (rotate_half(tensor) * sin)
169
+ output = output.to(orig_dtype)
170
+ return output
171
+
172
+
173
+ class VisionRotaryEmbedding(nn.Module):
174
+
175
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
176
+ super().__init__()
177
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
178
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
179
+
180
+ def forward(self, seqlen: int) -> torch.Tensor:
181
+ seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
182
+ freqs = torch.outer(seq, self.inv_freq)
183
+ return freqs
184
+
185
+
186
+ class Videollama3VisionEmbeddings(nn.Module):
187
+
188
+ def __init__(self, config: Videollama3VisionEncoderConfig):
189
+ super().__init__()
190
+ self.config = config
191
+ self.embed_dim = config.hidden_size
192
+ self.patch_size = config.patch_size
193
+
194
+ self.patch_embedding = nn.Conv2d(
195
+ in_channels=config.num_channels,
196
+ out_channels=self.embed_dim,
197
+ kernel_size=self.patch_size,
198
+ stride=self.patch_size,
199
+ padding="valid",
200
+ )
201
+
202
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
203
+ hidden_states = hidden_states.view(
204
+ -1, self.config.num_channels, self.patch_size, self.patch_size
205
+ )
206
+ patch_embeds = self.patch_embedding(hidden_states) # shape = [*, width, grid, grid]
207
+ # embeddings = patch_embeds.flatten(2).transpose(1, 2)
208
+ embeddings = patch_embeds.view(-1, self.embed_dim)
209
+
210
+ return embeddings
211
+
212
+
213
+ class VisionAttention(nn.Module):
214
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
215
+
216
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
217
+ def __init__(self, config):
218
+ super().__init__()
219
+ self.config = config
220
+ self.embed_dim = config.hidden_size
221
+ self.num_heads = config.num_attention_heads
222
+ self.head_dim = self.embed_dim // self.num_heads
223
+ if self.head_dim * self.num_heads != self.embed_dim:
224
+ raise ValueError(
225
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
226
+ f" {self.num_heads})."
227
+ )
228
+ self.scale = self.head_dim**-0.5
229
+ self.dropout = config.attention_dropout
230
+
231
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
232
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
233
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
234
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
235
+
236
+ def forward(
237
+ self,
238
+ hidden_states: torch.Tensor,
239
+ cu_seqlens: torch.Tensor,
240
+ rotary_pos_emb: torch.Tensor = None,
241
+ ) -> torch.Tensor:
242
+ """Input shape: Time x Channel"""
243
+
244
+ q_len, _ = hidden_states.size()
245
+
246
+ query_states = self.q_proj(hidden_states)
247
+ key_states = self.k_proj(hidden_states)
248
+ value_states = self.v_proj(hidden_states)
249
+
250
+ query_states = query_states.view(q_len, self.num_heads, self.head_dim)
251
+ key_states = key_states.view(q_len, self.num_heads, self.head_dim)
252
+ value_states = value_states.view(q_len, self.num_heads, self.head_dim)
253
+
254
+ query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
255
+ key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
256
+
257
+ attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool)
258
+ for i in range(1, len(cu_seqlens)):
259
+ attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
260
+
261
+ query_states = query_states.transpose(0, 1)
262
+ key_states = key_states.transpose(0, 1)
263
+ value_states = value_states.transpose(0, 1)
264
+
265
+ attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim)
266
+ attn_weights = attn_weights + attention_mask
267
+
268
+ # upcast attention to fp32
269
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
270
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
271
+ attn_output = torch.matmul(attn_weights, value_states)
272
+
273
+ attn_output = attn_output.transpose(0, 1)
274
+ attn_output = attn_output.reshape(q_len, -1)
275
+ attn_output = self.out_proj(attn_output)
276
+
277
+ return attn_output
278
+
279
+
280
+ class VisionFlashAttention2(VisionAttention):
281
+
282
+ def __init__(self, *args, **kwargs):
283
+ super().__init__(*args, **kwargs)
284
+
285
+ # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
286
+ def forward(
287
+ self,
288
+ hidden_states: torch.Tensor,
289
+ cu_seqlens: torch.Tensor,
290
+ rotary_pos_emb: torch.Tensor = None,
291
+ ) -> torch.Tensor:
292
+ q_len, _ = hidden_states.size()
293
+
294
+ query_states = self.q_proj(hidden_states)
295
+ key_states = self.k_proj(hidden_states)
296
+ value_states = self.v_proj(hidden_states)
297
+
298
+ # Flash attention requires the input to have the shape
299
+ # batch_size x seq_length x head_dim x hidden_dim
300
+ # therefore we just need to keep the original shape
301
+ query_states = query_states.view(q_len, self.num_heads, self.head_dim)
302
+ key_states = key_states.view(q_len, self.num_heads, self.head_dim)
303
+ value_states = value_states.view(q_len, self.num_heads, self.head_dim)
304
+ query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
305
+ key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
306
+
307
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
308
+ attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
309
+ q_len, -1
310
+ )
311
+ attn_output = self.out_proj(attn_output)
312
+
313
+ return attn_output
314
+
315
+
316
+ class VisionSdpaAttention(VisionAttention):
317
+
318
+ def forward(
319
+ self,
320
+ hidden_states: torch.Tensor,
321
+ cu_seqlens: torch.Tensor,
322
+ rotary_pos_emb: torch.Tensor = None,
323
+ ) -> torch.Tensor:
324
+ seq_length = hidden_states.shape[0]
325
+ query_states = self.q_proj(hidden_states)
326
+ key_states = self.k_proj(hidden_states)
327
+ value_states = self.v_proj(hidden_states)
328
+
329
+ query_states = query_states.view(seq_length, self.num_heads, self.head_dim)
330
+ key_states = key_states.view(seq_length, self.num_heads, self.head_dim)
331
+ value_states = value_states.view(seq_length, self.num_heads, self.head_dim)
332
+
333
+ query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
334
+ key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0)
335
+
336
+ attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool)
337
+ for i in range(1, len(cu_seqlens)):
338
+ attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
339
+
340
+ query_states = query_states.transpose(0, 1)
341
+ key_states = key_states.transpose(0, 1)
342
+ value_states = value_states.transpose(0, 1)
343
+ attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0)
344
+ attn_output = attn_output.transpose(0, 1)
345
+ attn_output = attn_output.reshape(seq_length, -1)
346
+ attn_output = self.proj(attn_output)
347
+ return attn_output
348
+
349
+
350
+ VISION_ATTENTION_CLASSES = {
351
+ "eager": VisionAttention,
352
+ "flash_attention_2": VisionFlashAttention2,
353
+ "sdpa": VisionSdpaAttention,
354
+ }
355
+
356
+
357
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Videollama3
358
+ class Videollama3VisionMLP(nn.Module):
359
+
360
+ def __init__(self, config):
361
+ super().__init__()
362
+ self.config = config
363
+ self.activation_fn = ACT2FN[config.hidden_act]
364
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
365
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
366
+
367
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
368
+ hidden_states = self.fc1(hidden_states)
369
+ hidden_states = self.activation_fn(hidden_states)
370
+ hidden_states = self.fc2(hidden_states)
371
+ return hidden_states
372
+
373
+
374
+ class Videollama3VisionEncoderLayer(nn.Module):
375
+
376
+ def __init__(self, config: Videollama3VisionEncoderConfig):
377
+ super().__init__()
378
+ self.embed_dim = config.hidden_size
379
+ self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config)
380
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
381
+ self.mlp = Videollama3VisionMLP(config)
382
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
383
+
384
+ # Ignore copy
385
+ def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
386
+ hidden_states = hidden_states + self.self_attn(
387
+ self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
388
+ )
389
+ hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states))
390
+ return hidden_states
391
+
392
+
393
+ class Videollama3VisionTransformerEncoder(nn.Module):
394
+
395
+ def __init__(self, config: Videollama3VisionEncoderConfig):
396
+ super().__init__()
397
+ self.config = config
398
+ head_dim = config.hidden_size // config.num_attention_heads
399
+ self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
400
+ self.layers = nn.ModuleList([Videollama3VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
401
+ self.gradient_checkpointing = False
402
+
403
+ def rot_pos_emb(self, grid_sizes, merge_sizes):
404
+ pos_ids = []
405
+ for (t, h, w), merge_size in zip(grid_sizes, merge_sizes):
406
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
407
+ hpos_ids = hpos_ids.reshape(
408
+ h // merge_size,
409
+ merge_size,
410
+ w // merge_size,
411
+ merge_size,
412
+ )
413
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
414
+ hpos_ids = hpos_ids.flatten()
415
+
416
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
417
+ wpos_ids = wpos_ids.reshape(
418
+ h // merge_size,
419
+ merge_size,
420
+ w // merge_size,
421
+ merge_size,
422
+ )
423
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
424
+ wpos_ids = wpos_ids.flatten()
425
+ pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
426
+
427
+ pos_ids = torch.cat(pos_ids, dim=0)
428
+ max_grid_size = grid_sizes[:, 1:].max()
429
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
430
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
431
+
432
+ return rotary_pos_emb
433
+
434
+ def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor:
435
+ rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes)
436
+
437
+ cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32)
438
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
439
+
440
+ for blk in self.layers:
441
+ if self.gradient_checkpointing and self.training:
442
+ hidden_states = self._gradient_checkpointing_func(
443
+ blk.__call__,
444
+ hidden_states,
445
+ cu_seqlens,
446
+ rotary_pos_emb
447
+ )
448
+ else:
449
+ hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
450
+
451
+ return hidden_states
452
+
453
+
454
+ class Videollama3VisionEncoderModel(PreTrainedModel):
455
+
456
+ config_class = Videollama3VisionEncoderConfig
457
+ base_model_prefix = "videollama3"
458
+ main_input_name = "pixel_values"
459
+ supports_gradient_checkpointing = True
460
+ _no_split_modules = [
461
+ "Videollama3VisionEncoderLayer",
462
+ "Videollama3VisionEmbeddings",
463
+ ]
464
+ _supports_flash_attn_2 = True
465
+ _supports_sdpa = True
466
+
467
+ def __init__(self, config: Videollama3VisionEncoderConfig):
468
+ super().__init__(config=config)
469
+ embed_dim = config.hidden_size
470
+
471
+ self.embeddings = Videollama3VisionEmbeddings(config)
472
+ self.encoder = Videollama3VisionTransformerEncoder(config)
473
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
474
+
475
+ self.post_init()
476
+
477
+ def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor:
478
+ hidden_states = self.embeddings(pixel_values)
479
+ hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes)
480
+ hidden_states = self.post_layernorm(hidden_states)
481
+
482
+ hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0)
483
+ outputs = []
484
+
485
+ for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes):
486
+ # NOTE: previous implementation, which supports downsampling with any factor
487
+ c = hidden_states.shape[-1]
488
+ hidden_states = hidden_states.view(
489
+ grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size, c
490
+ ).permute(0, 1, 3, 2, 4, 5)
491
+ hidden_states = hidden_states.reshape(
492
+ grid_size[0], grid_size[1], grid_size[2], c
493
+ ).permute(0, 3, 1, 2)
494
+ hidden_states = torch.nn.functional.interpolate(
495
+ hidden_states,
496
+ size=(grid_size[1] // merge_size, grid_size[2] // merge_size),
497
+ mode='bilinear'
498
+ )
499
+ hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c)
500
+
501
+ # NOTE: simplified implementation, which only supports downsampling with integer factor
502
+ # NOTE: this implementation is mathematically equivalent to the previous one when merge_size is 1 or 2 but may cause slightly different results
503
+ # hidden_states = hidden_states.view(-1, merge_size * merge_size, hidden_states.size(-1))
504
+ # hidden_states = hidden_states.mean(dim=1)
505
+
506
+ outputs.append(hidden_states)
507
+
508
+ return torch.cat(outputs, dim=0)
509
+
510
+ def _init_weights(self, module):
511
+ """Initialize the weights"""
512
+ if isinstance(module, nn.Embedding):
513
+ default_flax_embed_init(module.weight)
514
+ elif isinstance(module, VisionAttention):
515
+ nn.init.xavier_uniform_(module.q_proj.weight)
516
+ nn.init.xavier_uniform_(module.k_proj.weight)
517
+ nn.init.xavier_uniform_(module.v_proj.weight)
518
+ nn.init.xavier_uniform_(module.out_proj.weight)
519
+ nn.init.zeros_(module.q_proj.bias)
520
+ nn.init.zeros_(module.k_proj.bias)
521
+ nn.init.zeros_(module.v_proj.bias)
522
+ nn.init.zeros_(module.out_proj.bias)
523
+ elif isinstance(module, Videollama3VisionMLP):
524
+ nn.init.xavier_uniform_(module.fc1.weight)
525
+ nn.init.xavier_uniform_(module.fc2.weight)
526
+ nn.init.normal_(module.fc1.bias, std=1e-6)
527
+ nn.init.normal_(module.fc2.bias, std=1e-6)
528
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
529
+ lecun_normal_(module.weight)
530
+ if module.bias is not None:
531
+ nn.init.zeros_(module.bias)
532
+ elif isinstance(module, nn.LayerNorm):
533
+ module.bias.data.zero_()
534
+ module.weight.data.fill_(1.0)