File size: 38,927 Bytes
f4ad318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
"""Processor class for VideoLLaMA3."""

import copy
import importlib.util
import os
import os.path as osp
import warnings
from collections import defaultdict
from typing import Any, List, Union, Dict, Optional, Tuple, TypedDict

import cv2
import ffmpeg
import imageio
import json
import numpy as np
import torch
import transformers
from decord import VideoReader, cpu
from PIL import Image
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput

try:
    from . import image_processing_videollama3
    from .image_processing_videollama3 import (
        is_valid_image, is_valid_video,
    )
except ModuleNotFoundError:
    spec = importlib.util.spec_from_file_location(
        "image_processing_videollama3",
        osp.join(osp.dirname(__file__), "image_processing_videollama3.py"),
    )
    image_processing_videollama3 = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(image_processing_videollama3)
    is_valid_image = getattr(image_processing_videollama3, "is_valid_image")
    is_valid_video = getattr(image_processing_videollama3, "is_valid_video")

# constants
DEFAULT_IMAGE_TOKEN = "<image>"
IGNORE_INDEX = -100

# Type aliases
Conversation = List[Dict[str, Any]]
SingleImage = Union[Image.Image, np.ndarray, torch.Tensor]
SingleVideo = Union[List[SingleImage], np.ndarray, torch.Tensor]
BatchedImage = List[Union[SingleImage, SingleVideo]]
BatchedNamedImage = List[Tuple[str, Union[SingleImage, SingleVideo]]]


def _custom_import(class_name: str):
    try:
        attribute_class = getattr(transformers, class_name)
    except AttributeError:
        attribute_class = getattr(image_processing_videollama3, class_name)
    return attribute_class


def is_named_image(image) -> bool:
    return isinstance(image, (list, tuple)) and \
        len(image) == 2 and \
        isinstance(image[0], str) and \
        image[0] in ["image", "video"] and \
        (is_valid_image(image[1]) or is_valid_video(image[1]))


def make_batched_images(images) -> List[List[ImageInput]]:
    if isinstance(images, (list, tuple)) and all(is_named_image(image) for image in images):
        # list of named images
        return [image[0] for image in images], [image[1] for image in images]
    elif isinstance(images, (list, tuple)) and all(is_valid_image(image) or is_valid_video(image) for image in images):
        # list of images/videos
        batch = []
        for image in images:
            if is_valid_video(image):
                batch.append(("video", image))
            elif is_valid_image(image):
                batch.append(("image", image))
            else:
                raise ValueError(f"Could not make batched images from {images}")
        return [x[0] for x in batch], [x[1] for x in batch]
    elif is_named_image(images):
        # named images
        return [images[0]], [image[1]]
    elif is_valid_video(images):
        # single video
        return ["video"], [images]
    elif is_valid_image(images):
        # single image
        return ["image"], [images]

    raise ValueError(f"Could not make batched images from {images}")


def frame_sample(duration, mode='uniform', num_frames=None, vid_fps=None, fps=None):
    if mode == 'uniform':
        assert num_frames is not None, "Number of frames must be provided for uniform sampling."
        if duration <= num_frames:
            return np.arange(duration).astype(int)
        # NOTE: v1 version
        # Calculate the size of each segment from which a frame will be extracted
        # if duration <= num_frames:
        #     return np.arange(duration).astype(int)
        # seg_size = float(duration - 1) / num_frames

        # frame_ids = []
        # for i in range(num_frames):
        #     # Calculate the start and end indices of each segment
        #     start = seg_size * i
        #     end   = seg_size * (i + 1)
        #     # Append the middle index of the segment to the list
        #     frame_ids.append((start + end) / 2)

        # return np.round(np.array(frame_ids) + 1e-6).astype(int)
        # NOTE: v0 version
        return np.linspace(0, duration-1, num_frames, dtype=int)
    elif mode == 'fps':
        assert vid_fps is not None, "FPS must be provided for FPS sampling."
        assert fps is not None, "FPS must be provided for FPS sampling."
        segment_len = min(vid_fps // fps, duration)
        return np.arange(segment_len // 2, duration, segment_len, dtype=int)
    else:
        raise ImportError(f'Unsupported frame sampling mode: {mode}')


def load_video_from_ids(video_path, s=None, e=None, fps=None, max_frames=128, temporal_factor=1):
    if s is not None and e is not None:
        s = s if s >= 0. else 0.
        e = e if e >= 0. else 0.
        if s > e:
            s, e = e, s
        elif s == e:
            e = s + 1

    # 1. Loading Video
    if os.path.isdir(video_path):
        frame_files = sorted(os.listdir(video_path))

        vid_fps = 3
        num_frames_of_video = len(frame_files)
    elif video_path.endswith('.gif'):
        gif_reader = imageio.get_reader(video_path)

        vid_fps = 25
        num_frames_of_video = len(gif_reader)
    else:
        vreader = VideoReader(video_path, ctx=cpu(0), num_threads=2)
        # vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1)

        vid_fps = vreader.get_avg_fps()
        num_frames_of_video = len(vreader)

    # 2. Determine frame range & Calculate frame indices
    f_start = 0                       if s is None else max(int(s * vid_fps) - 1, 0)
    f_end   = num_frames_of_video - 1 if e is None else min(int(e * vid_fps) - 1, num_frames_of_video - 1)
    frame_indices = list(range(f_start, f_end + 1))

    duration = len(frame_indices)
    # 3. Sampling frame indices
    if fps is not None and duration / vid_fps < max_frames:
        sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', vid_fps=vid_fps, fps=fps)]
    else:
        sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=max_frames)]

    # 4. Acquire frame data
    if os.path.isdir(video_path):
        frames = np.array([cv2.cvtColor(cv2.imread(os.path.join(video_path, frame_files[frame_idx])), cv2.COLOR_BGR2RGB) for frame_idx in sampled_frame_indices])
    elif video_path.endswith('.gif'):
        frames = np.array([cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices])
    else:
        frames = vreader.get_batch(sampled_frame_indices).asnumpy()

    frames = frames.transpose(0, 3, 1, 2)
    timestamps = [x / vid_fps for x in sampled_frame_indices]

    if temporal_factor > 1:
        pad_length = temporal_factor - len(frames) % temporal_factor
        frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)])
        [timestamps.append(timestamps[-1] + 1 / fps) for _ in range(pad_length)]

    frames = [frame for frame in frames]

    return frames, timestamps


class ChatTemplateKwargs(TypedDict, total=False):

    chat_template: Optional[str]
    add_system_prompt: Optional[bool]
    add_generation_prompt: Optional[bool]


class Videollama3Qwen2ProcessorKwargs(ProcessingKwargs, ChatTemplateKwargs, total=False):

    chat_template_kwargs: ChatTemplateKwargs = {
        **ChatTemplateKwargs.__annotations__,
    }

    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "image_kwargs": {
            "merge_size": None,
        },
        "chat_template_kwargs": {
            "chat_template": None,
            "add_system_prompt": False,
            "add_generation_prompt": False,
        },
    }


class Videollama3Qwen2Processor(ProcessorMixin):

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "Videollama3ImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
    valid_kwargs = ["chat_template", "image_merge_size", "video_merge_size", "fps", "max_frames"]

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template: str = None,
        image_merge_size: int = 1,
        video_merge_size: int = 2,
        fps: Optional[int] = 1,
        max_frames: Optional[int] = 128,
    ):
        self.image_processor = image_processor
        self.tokenizer = tokenizer
        if chat_template is None:
            chat_template = self.tokenizer.chat_template
        self.chat_template = chat_template

        self.image_merge_size = image_merge_size
        self.video_merge_size = video_merge_size
        self.fps = fps
        self.max_frames = max_frames

        self.generation_prompt = self._infer_generation_prompt()
        self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt")
        self.generation_prompt_length = len(self.generation_prompt_ids[0])
        self.image_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
        self.eos_token_id = self.tokenizer.eos_token_id

    @classmethod
    def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        args = []
        for attribute_name in cls.attributes:
            class_name = getattr(cls, f"{attribute_name}_class")
            if isinstance(class_name, tuple):
                classes = tuple(_custom_import(n) if n is not None else None for n in class_name)
                use_fast = kwargs.get("use_fast", True)
                if use_fast and classes[1] is not None:
                    attribute_class = classes[1]
                else:
                    attribute_class = classes[0]
            else:
                attribute_class = _custom_import(class_name)

            args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
        return args

    def get_generation_prompt(self):
        return self.generation_prompt

    def get_generation_prompt_ids(self):
        return self.generation_prompt_ids

    def _infer_generation_prompt(self):
        pseudo_message = [{"role": "user", "content": ""}]
        instruction = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True)
        conversation = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False)
        return instruction.replace(conversation, "")

    def _get_downsampled_grid_sizes(self, image_inputs: Dict[str, Any]):
        grid_sizes = []
        for grid_size, merge_size in zip(image_inputs.get("grid_sizes", []), image_inputs.get("merge_sizes", [])):
            if not torch.all(grid_size[1:] % merge_size == 0):
                warnings.warn(f"Grid size {grid_size} is not divisible by merge size. Some undesired errors may occur.")
            if grid_size[0] == 1:
                grid_sizes.append(grid_size[1:] / merge_size)
            elif grid_size[0] > 1:
                grid_sizes.extend([grid_size[1:] / merge_size] * grid_size[0])
        return grid_sizes

    def _get_visual_seq_len(self, grid_size: torch.Tensor):
        num_tokens = int(grid_size.prod().item())
        return num_tokens

    def load_images(self, image_path: Union[str, List[str], Image.Image, List[Image.Image]]):
        if isinstance(image_path, str) and os.path.isfile(image_path):
            # images = [cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)]
            images = [Image.open(image_path).convert('RGB')]
        elif isinstance(image_path, str) and os.path.isdir(image_path):
            # images = [cv2.cvtColor(cv2.imread(os.path.join(image_path, f)), cv2.COLOR_BGR2RGB) for f in sorted(os.listdir(image_path))]
            images = [Image.open(os.path.join(image_path, f)).convert('RGB') for f in sorted(os.listdir(image_path))]
        elif isinstance(image_path, list) and isinstance(image_path[0], str):
            # images = [cv2.cvtColor(cv2.imread(f), cv2.COLOR_BGR2RGB) for f in image_path]
            images = [Image.open(f).convert('RGB') for f in image_path]
        elif isinstance(image_path, list) and isinstance(image_path[0], Image.Image):
            images = [np.array(x) for x in image_path]
        elif isinstance(image_path, Image.Image):
            images = [np.array(image_path)]
        else:
            raise ValueError(f"Unsupported image path type: {type(image_path)}")
        return images

    def load_video(
        self,
        video_path: str,
        start_time: Optional[float] = None,
        end_time: Optional[float] = None,
        fps: Optional[float] = None,
        max_frames: Optional[float] = None,
        size: Optional[int] = None,
        size_divisible: int = 1,
        precise_time: bool = False,
        verbose: bool = False,
        temporal_factor: int = 1
    ):
        """
        Load and process a video file and return the frames and the timestamps of each frame.

        Args:
            video_path (str): Path to the video file.
            start_time (float, optional): Start time in seconds. Defaults to None.
            end_time (float, optional): End time in seconds. Defaults to None.
            fps (float, optional): Frames per second. Defaults to None.
            num_frames (float, optional): Number of frames to sample. Defaults to None.
            size (int, optional): Size of the shortest side. Defaults to None.
            size_divisible (int, optional): Size divisible by this number. Defaults to 1.
            precise_time (bool, optional): Whether to use precise time. Defaults to False.
            verbose (bool, optional): Print ffmpeg output. Defaults to False.

        Returns:
            frames (List[PIL.Image]): List of frames.
            timestamps (List[float]): List of timestamps.
        """
        fps = self.fps if fps is None else fps
        max_frames = self.max_frames if max_frames is None else max_frames

        if start_time is not None and end_time is not None and end_time - start_time < 1:
            return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
        if os.path.isdir(video_path):
            return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
        if video_path.endswith('.gif'):
            return load_video_from_ids(video_path, start_time, end_time, fps=fps, max_frames=max_frames)
        probe = ffmpeg.probe(video_path)
        duration = float(probe['format']['duration'])
        video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
        w, h = int(video_stream['width']), int(video_stream['height'])

        kwargs, input_kwargs, output_kwargs = {}, {}, {}
        do_trim = start_time is not None or end_time is not None
        if start_time is not None:
            new_start_time = max(float(video_stream['start_time']), start_time)
            duration -= new_start_time - start_time
            start_time = new_start_time
        else:
            start_time = float(video_stream['start_time'])
        if end_time is not None:
            duration = min(duration, end_time - start_time)
        else:
            duration = duration
        if do_trim:
            kwargs = {'ss': start_time, 't': duration}
        if precise_time:
            output_kwargs.update(kwargs)
        else:
            input_kwargs.update(kwargs)

        if size is not None:
            scale_factor = size / min(w, h)
            new_w, new_h = round(w * scale_factor), round(h * scale_factor)
        else:
            new_w, new_h = w, h
        new_w = new_w // size_divisible * size_divisible
        new_h = new_h // size_divisible * size_divisible

        # NOTE: It may result in unexpected number of frames in ffmpeg
        # if calculate the fps directly according to max_frames
        # if max_frames is not None and (fps is None or duration * fps > 2 * max_frames):
        #     fps = round(max_frames / duration * 2)

        stream = ffmpeg.input(video_path, **input_kwargs)
        if fps is not None:
            stream = ffmpeg.filter(stream, "fps", fps=fps, round="down")
        if new_w != w or new_h != h:
            stream = ffmpeg.filter(stream, 'scale', new_w, new_h)
        stream = ffmpeg.output(stream, "pipe:", format="rawvideo", pix_fmt="rgb24", **output_kwargs)
        out, _ = ffmpeg.run(stream, capture_stdout=True, quiet=not verbose)

        frames = np.frombuffer(out, np.uint8).reshape([-1, new_h, new_w, 3]).transpose([0, 3, 1, 2])

        if fps is not None:
            timestamps = np.arange(start_time, start_time + duration + 1 / fps, 1 / fps)[:len(frames)]
        else:
            timestamps = np.linspace(start_time, start_time + duration, len(frames))

        if max_frames is not None and len(frames) > max_frames:
            indices = np.linspace(0, len(frames) - 1, max_frames, dtype=int)
            frames = frames[indices]
            timestamps = timestamps[indices]

        if temporal_factor > 1:
            pad_length = temporal_factor - len(frames) % temporal_factor
            frames = np.concatenate([frames, frames[-1:].repeat(pad_length, axis=0)])
            timestamps = np.concatenate([timestamps, timestamps[-1:].repeat(pad_length) + np.arange(1, pad_length + 1) / fps])

        frames = [frame for frame in frames]
        timestamps = [timestamp for timestamp in timestamps]

        return frames, timestamps

    def _load_multimodal_data(self, conversation: Conversation):
        multimodal_info = defaultdict(list)
        new_conversation = []
        for message in conversation:
            new_message = {"role": message["role"]}
            if not isinstance(message["content"], (list, tuple)):
                new_message["content"] = message["content"]
                new_conversation.append(new_message)
                continue

            new_contents = []
            for content in message["content"]:
                if not isinstance(content, dict):
                    new_contents.append(content)
                    continue
                assert "type" in content, "Content must have 'type' field."
                if content["type"] in ["image", "video"] and content["type"] in content and isinstance(content[content["type"]], dict):
                    # TODO: support other types which are not compatible with json
                    load_args = content[content["type"]]
                    data_id = json.dumps({k: v for k, v in load_args.items() if not k in ["start_time", "end_time"]})
                    new_content = copy.deepcopy(content)
                    multimodal_info[data_id].append(new_content)
                    new_contents.append(new_content)
                else:
                    new_contents.append(content)

            new_message["content"] = new_contents
            new_conversation.append(new_message)

        for data_id, contents in multimodal_info.items():
            data_type = contents[0]["type"]
            if data_type == "image":
                image = self.load_images(contents[0][data_type]["image_path"])[0]
                for content in contents:
                    content["image"] = [image.copy()]

            elif data_type == "video":
                # TODO: start_time is None?
                start_times = [content["video"].get("start_time", 0.) for content in contents]
                end_times = [content["video"].get("end_time", float("inf")) for content in contents]

                load_args = contents[0][data_type]
                start_time, end_time = min(start_times), max(end_times)
                if start_time > 0:
                    load_args["start_time"] = start_time
                if end_time < float("inf"):
                    load_args["end_time"] = end_time
                images, timestamps = self.load_video(**load_args)

                for content, start_time, end_time in zip(contents, start_times, end_times):
                    cur_images, cur_timestamps = [], []
                    for image, timestamp in zip(images, timestamps):
                        if start_time <= timestamp <= end_time:
                            cur_images.append(image.copy())
                            cur_timestamps.append(timestamp)

                    content[data_type] = cur_images
                    content["num_frames"] = len(cur_images)
                    content["timestamps"] = cur_timestamps

        return new_conversation

    def _gather_multimodal_data(self, conversation: Conversation):
        images = []
        for message in conversation:
            if not isinstance(message["content"], (list, tuple)):
                continue
            for content in message["content"]:
                if not isinstance(content, dict):
                    continue
                if content["type"] == "video":
                    video = content["video"]
                    assert is_valid_video(video), f"Invalid video data: {video}."
                    images.append(("video", video))
                if content["type"] == "image":
                    image = content["image"]
                    images.append(("image", image))
        images = images if len(images) > 0 else None
        return images

    def _process_conversation_with_label(
        self,
        conversation: Conversation,
        image_inputs: Dict[str, Any],
        **kwargs,
    ):
        assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True."
        assert not "add_generation_prompt" in kwargs, "'add_generation_prompt' argument is not supported when return_labels=True."

        output_kwargs = self._merge_kwargs(
            Videollama3Qwen2ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        output_kwargs["chat_template_kwargs"].pop("add_generation_prompt")

        grid_sizes = self._get_downsampled_grid_sizes(image_inputs)
        text_inputs = {"input_ids": [], "labels": []}
        sample_types_list = []
        image_idx = 0

        for message_idx, message in enumerate(conversation):
            prompt = self.apply_chat_template(
                [message],
                tokenize=False,
                add_generation_prompt=False,
                **output_kwargs["chat_template_kwargs"],
            )
            prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN)
            prompt = []
            for chunk_idx in range(len(prompt_chunks) - 1):
                prompt.append(prompt_chunks[chunk_idx])
                num_tokens = self._get_visual_seq_len(grid_sizes[image_idx])
                prompt.append(DEFAULT_IMAGE_TOKEN * num_tokens)
                image_idx += 1
            prompt.append(prompt_chunks[-1])
            prompt = "".join(prompt)

            # TODO: support attention_mask, position_ids, etc.
            input_ids = self.tokenizer.encode(prompt, return_tensors="pt", **output_kwargs["text_kwargs"])[0]
            text_inputs["input_ids"].append(input_ids)

            targets = torch.full_like(input_ids, IGNORE_INDEX)
            sample_types = torch.full_like(input_ids, IGNORE_INDEX)
            if message["role"] == "assistant":
                targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone()
            # elif message["role"] == "stream":
            #     diff = torch.diff((input_ids == self.image_token_id).float())
            #     image_end_indices = torch.nonzero(diff < 0)[:, 0]
            #     targets[image_end_indices + 1] = input_ids[image_end_indices + 1]
            #     sample_types = targets.clone()
            #     sample_types[torch.logical_and(sample_types > 0, sample_types != self.eos_token_id)] = 0
            #     targets[-2] = input_ids[-2]    # <|im_end|>

            if message_idx > 0 and conversation[message_idx - 1]["role"] == "stream":
                targets[0] = input_ids[0]
                # TODO: consider non-special tokens
                sample_types[0] = input_ids[0]

            text_inputs["labels"].append(targets)
            sample_types_list.append(sample_types)

        # Negative sampling for streaming data
        text_inputs = {k: torch.cat(v) for k, v in text_inputs.items()}
        sample_types = torch.cat(sample_types_list)
        types, counts = torch.unique(sample_types[sample_types > -1], return_counts=True)

        if len(types) > 0:
            target_num_samples = counts.amin()
            for type_id, type_count in zip(types, counts):
                if type_count > target_num_samples:
                    indices = torch.nonzero(sample_types == type_id)[:, 0]
                    random_selector = torch.randperm(indices.size(0))[:-target_num_samples]
                    text_inputs["labels"][indices[random_selector]] = IGNORE_INDEX
                    # sample_types[indices[random_selector]] = -1

        assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text."

        return text_inputs

    def _process_conversation_without_label(
        self,
        conversation: Conversation,
        image_inputs: Dict[str, Any],
        **kwargs,
    ):
        output_kwargs = self._merge_kwargs(
            Videollama3Qwen2ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        prompt = self.apply_chat_template(
            conversation,
            tokenize=False,
            **output_kwargs["chat_template_kwargs"],
        )
        return self.process_text(prompt, image_inputs, **output_kwargs["text_kwargs"])

    def _process_conversation(
        self,
        conversation: Conversation,
        images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
        return_labels: bool = False,
        **kwargs: Unpack[Videollama3Qwen2ProcessorKwargs],
    ) -> BatchFeature:
        assert isinstance(conversation, list), "Conversation must be a list of messages."

        if images is None:
            conversation = self._load_multimodal_data(conversation)
            images = self._gather_multimodal_data(conversation)

        output_kwargs = self._merge_kwargs(
            Videollama3Qwen2ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if images is not None:
            image_inputs = self.process_images(images, **output_kwargs["images_kwargs"])
        else:
            image_inputs = {}

        if return_labels:
            text_inputs = self._process_conversation_with_label(conversation, image_inputs, **kwargs)
        else:
            text_inputs = self._process_conversation_without_label(conversation, image_inputs, **kwargs)

        return BatchFeature(data={**text_inputs, **image_inputs})

    def _process_plain(
        self,
        text: Union[TextInput, PreTokenizedInput] = None,
        images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
        return_labels: bool = False,
        **kwargs: Unpack[Videollama3Qwen2ProcessorKwargs],
    ) -> BatchFeature:
        if text is None:
            raise ValueError("You must provide 'text' or 'message'.")
        if return_labels:
            raise ValueError("return_labels is not supported for plain text processing.")

        output_kwargs = self._merge_kwargs(
            Videollama3Qwen2ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if images is not None:
            image_inputs = self.process_images(images, **output_kwargs["images_kwargs"])
        else:
            image_inputs = {}

        text_inputs = self.process_text(text, image_inputs, **output_kwargs["text_kwargs"])

        return BatchFeature(data={**text_inputs, **image_inputs})

    def process_images(self, images: Union[BatchedImage, BatchedNamedImage], **kwargs):
        modals, images = make_batched_images(images)
        if not "merge_size" in kwargs:
            kwargs["merge_size"] = [
                self.image_merge_size if modal == "image" else self.video_merge_size
                for modal in modals
            ]
        image_inputs = self.image_processor(images=images, **kwargs)
        image_inputs["modals"] = modals
        return image_inputs

    def process_text(
        self,
        text: TextInput,
        image_inputs: Dict[str, Any],
        **kwargs,
    ):
        grid_sizes = self._get_downsampled_grid_sizes(image_inputs)

        kwargs.pop("padding")
        kwargs.pop("padding_side")

        image_idx = 0
        while DEFAULT_IMAGE_TOKEN in text:
            num_tokens = self._get_visual_seq_len(grid_sizes[image_idx])
            text = text.replace(DEFAULT_IMAGE_TOKEN, "<placeholder>" * num_tokens, 1)
            image_idx += 1
        text = text.replace("<placeholder>", DEFAULT_IMAGE_TOKEN)
 
        assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text."

        text_inputs = self.tokenizer(text, **kwargs)
        return text_inputs

    def __call__(
        self,
        text: Optional[TextInput] = None,
        conversation: Optional[Conversation] = None,
        images: Optional[Union[BatchedImage, BatchedNamedImage]] = None,
        return_labels: bool = False,
        **kwargs: Unpack[Videollama3Qwen2ProcessorKwargs],
    ) -> BatchFeature:
        if conversation is not None:
            if text is not None:
                raise ValueError("You cannot provide 'message' with 'text'.")
            return self._process_conversation(conversation, images, return_labels, **kwargs)
        return self._process_plain(text, images, return_labels, **kwargs)

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    def apply_chat_template(
        self,
        conversation: Conversation,
        chat_template: Optional[str] = None,
        tokenize: bool = False,
        add_system_prompt: bool = False,
        add_generation_prompt: bool = False,
        image_token: Optional[str] = DEFAULT_IMAGE_TOKEN,
        **kwargs,
    ) -> str:
        """
        Similar to the `apply_chat_template` method on tokenizers, this method applies a Jinja template to input
        conversations to turn them into a single tokenizable string.

        Args:
            conversation (`List[Dict, str, str]`):
                The conversation to format.
            chat_template (`Optional[str]`, *optional*):
                The Jinja template to use for formatting the conversation. If not provided, the tokenizer's
                chat template is used.
            tokenize (`bool`, *optional*, defaults to `False`):
                Whether to tokenize the output or not.
            add_system_prompt (`bool`, *optional*, defaults to `False`):
                Whether to add the system prompt to the output or not.
            add_generation_prompt (`bool`, *optional*, defaults to `False`):
                Whether to add the generation prompt to the output or not.
            image_token (`Optional[str]`, *optional*, defaults to `<image>`):
                The token to use for indicating images in the conversation.
            **kwargs:
                Additional keyword arguments
        """

        if chat_template is None:
            if self.chat_template is not None:
                chat_template = self.chat_template
            else:
                raise ValueError(
                    "No chat template is set for this processor. Please either set the `chat_template` attribute, "
                    "or provide a chat template as an argument. See "
                    "https://huggingface.co./docs/transformers/main/en/chat_templating for more information."
                )
        return self.tokenizer.apply_chat_template(
            conversation,
            chat_template=chat_template,
            tokenize=tokenize,
            add_system_prompt=add_system_prompt,
            add_generation_prompt=add_generation_prompt,
            image_token=image_token,
            **kwargs
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) + ["modals"]

    # modified from transformers.ProcessorMixin
    def _merge_kwargs(
        self,
        ModelProcessorKwargs: ProcessingKwargs,
        tokenizer_init_kwargs: Optional[Dict] = None,
        **kwargs,
    ) -> Dict[str, Dict]:
        """
        Method to merge dictionaries of kwargs cleanly separated by modality within a Processor instance.
        The order of operations is as follows:
            1) kwargs passed as before have highest priority to preserve BC.
                ```python
                high_priority_kwargs = {"crop_size" = {"height": 222, "width": 222}, "padding" = "max_length"}
                processor(..., **high_priority_kwargs)
                ```
            2) kwargs passed as modality-specific kwargs have second priority. This is the recommended API.
                ```python
                processor(..., text_kwargs={"padding": "max_length"}, images_kwargs={"crop_size": {"height": 222, "width": 222}}})
                ```
            3) kwargs passed during instantiation of a modality processor have fourth priority.
                ```python
                tokenizer = tokenizer_class(..., {"padding": "max_length"})
                image_processor = image_processor_class(...)
                processor(tokenizer, image_processor) # will pass max_length unless overriden by kwargs at call
                ```
            4) defaults kwargs specified at processor level have lowest priority.
                ```python
                class MyProcessingKwargs(ProcessingKwargs, CommonKwargs, TextKwargs, ImagesKwargs, total=False):
                    _defaults = {
                        "text_kwargs": {
                            "padding": "max_length",
                            "max_length": 64,
                        },
                    }
                ```
        Args:
            ModelProcessorKwargs (`ProcessingKwargs`):
                Typed dictionary of kwargs specifically required by the model passed.
            tokenizer_init_kwargs (`Dict`, *optional*):
                Dictionary of kwargs the tokenizer was instantiated with and need to take precedence over defaults.

        Returns:
            output_kwargs (`Dict`):
                Dictionary of per-modality kwargs to be passed to each modality-specific processor.

        """
        # Initialize dictionaries
        output_kwargs = {
            "text_kwargs": {},
            "images_kwargs": {},
            "audio_kwargs": {},
            "videos_kwargs": {},
            "chat_template_kwargs": {},
            "common_kwargs": {},
        }

        default_kwargs = {
            "text_kwargs": {},
            "images_kwargs": {},
            "audio_kwargs": {},
            "videos_kwargs": {},
            "chat_template_kwargs": {},
            "common_kwargs": {},
        }

        used_keys = set()

        # get defaults from set model processor kwargs if they exist
        for modality in default_kwargs:
            default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy()
            # update defaults with arguments from tokenizer init
            for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
                # init with tokenizer init kwargs if necessary
                if modality_key in tokenizer_init_kwargs:
                    value = (
                        getattr(self.tokenizer, modality_key)
                        if hasattr(self.tokenizer, modality_key)
                        else tokenizer_init_kwargs[modality_key]
                    )
                    default_kwargs[modality][modality_key] = value
        # now defaults kwargs are updated with the tokenizers defaults.
        # pass defaults to output dictionary
        output_kwargs.update(default_kwargs)

        # update modality kwargs with passed kwargs
        non_modality_kwargs = set(kwargs) - set(output_kwargs)
        for modality in output_kwargs:
            for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
                # check if we received a structured kwarg dict or not to handle it correctly
                if modality in kwargs:
                    kwarg_value = kwargs[modality].pop(modality_key, "__empty__")
                    # check if this key was passed as a flat kwarg.
                    if kwarg_value != "__empty__" and modality_key in non_modality_kwargs:
                        raise ValueError(
                            f"Keyword argument {modality_key} was passed two times:\n"
                            f"in a dictionary for {modality} and as a **kwarg."
                        )
                elif modality_key in kwargs:
                    # we get a modality_key instead of popping it because modality-specific processors
                    # can have overlapping kwargs
                    kwarg_value = kwargs.get(modality_key, "__empty__")
                else:
                    kwarg_value = "__empty__"
                if kwarg_value != "__empty__":
                    output_kwargs[modality][modality_key] = kwarg_value
                    used_keys.add(modality_key)

        # Determine if kwargs is a flat dictionary or contains nested dictionaries
        if any(key in default_kwargs for key in kwargs):
            # kwargs is dictionary-based, and some keys match modality names
            for modality, subdict in kwargs.items():
                if modality in default_kwargs:
                    for subkey, subvalue in subdict.items():
                        if subkey not in used_keys:
                            output_kwargs[modality][subkey] = subvalue
                            used_keys.add(subkey)
        else:
            # kwargs is a flat dictionary
            for key in kwargs:
                if key not in used_keys:
                    output_kwargs["common_kwargs"][key] = kwargs[key]

        # all modality-specific kwargs are updated with common kwargs
        for modality in output_kwargs:
            output_kwargs[modality].update(output_kwargs["common_kwargs"])
        return output_kwargs