# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py. # Below is the original copyright: # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch VideoLLaMA3 vision encoder model.""" import importlib.util import os.path as osp import math import warnings import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn.init import _calculate_fan_in_and_fan_out from transformers.activations import ACT2FN from transformers.modeling_utils import PreTrainedModel from transformers.utils import is_flash_attn_2_available if is_flash_attn_2_available(): from flash_attn import flash_attn_varlen_func else: flash_attn_varlen_func = None try: from .configuration_videollama3_encoder import Videollama3VisionEncoderConfig except ImportError: spec = importlib.util.spec_from_file_location( "configuration_videollama3_encoder", osp.join(osp.dirname(__file__), "configuration_videollama3_encoder.py"), ) configuration_videollama3_encoder = importlib.util.module_from_spec(spec) spec.loader.exec_module(configuration_videollama3_encoder) Videollama3VisionEncoderConfig = getattr( configuration_videollama3_encoder, "Videollama3VisionEncoderConfig", ) def _trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) def trunc_normal_tf_( tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 ) -> torch.Tensor: """Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \\leq \text{mean} \\leq b`. NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 and the result is subsequently scaled and shifted by the mean and std args. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value """ with torch.no_grad(): _trunc_normal_(tensor, 0, 1.0, a, b) tensor.mul_(std).add_(mean) def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) if mode == "fan_in": denom = fan_in elif mode == "fan_out": denom = fan_out elif mode == "fan_avg": denom = (fan_in + fan_out) / 2 variance = scale / denom if distribution == "truncated_normal": # constant is stddev of standard normal truncated to (-2, 2) trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) elif distribution == "normal": with torch.no_grad(): tensor.normal_(std=math.sqrt(variance)) elif distribution == "uniform": bound = math.sqrt(3 * variance) with torch.no_grad(): tensor.uniform_(-bound, bound) else: raise ValueError(f"invalid distribution {distribution}") def lecun_normal_(tensor): variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") def default_flax_embed_init(tensor): variance_scaling_(tensor, mode="fan_in", distribution="normal") # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: orig_dtype = tensor.dtype tensor = tensor.float() cos = freqs.cos() sin = freqs.sin() cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() output = (tensor * cos) + (rotate_half(tensor) * sin) output = output.to(orig_dtype) return output class VisionRotaryEmbedding(nn.Module): def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, seqlen: int) -> torch.Tensor: seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) freqs = torch.outer(seq, self.inv_freq) return freqs class Videollama3VisionEmbeddings(nn.Module): def __init__(self, config: Videollama3VisionEncoderConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = hidden_states.view( -1, self.config.num_channels, self.patch_size, self.patch_size ) patch_embeds = self.patch_embedding(hidden_states) # shape = [*, width, grid, grid] # embeddings = patch_embeds.flatten(2).transpose(1, 2) embeddings = patch_embeds.view(-1, self.embed_dim) return embeddings class VisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None, ) -> torch.Tensor: """Input shape: Time x Channel""" q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(q_len, self.num_heads, self.head_dim) key_states = key_states.view(q_len, self.num_heads, self.head_dim) value_states = value_states.view(q_len, self.num_heads, self.head_dim) query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) attention_mask = torch.zeros([1, q_len, q_len], device=query_states.device, dtype=torch.bool) for i in range(1, len(cu_seqlens)): attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True query_states = query_states.transpose(0, 1) key_states = key_states.transpose(0, 1) value_states = value_states.transpose(0, 1) attn_weights = torch.matmul(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(0, 1) attn_output = attn_output.reshape(q_len, -1) attn_output = self.out_proj(attn_output) return attn_output class VisionFlashAttention2(VisionAttention): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None, ) -> torch.Tensor: q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(q_len, self.num_heads, self.head_dim) key_states = key_states.view(q_len, self.num_heads, self.head_dim) value_states = value_states.view(q_len, self.num_heads, self.head_dim) query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() attn_output = flash_attn_varlen_func(query_states, key_states, value_states, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( q_len, -1 ) attn_output = self.out_proj(attn_output) return attn_output class VisionSdpaAttention(VisionAttention): def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None, ) -> torch.Tensor: seq_length = hidden_states.shape[0] query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(seq_length, self.num_heads, self.head_dim) key_states = key_states.view(seq_length, self.num_heads, self.head_dim) value_states = value_states.view(seq_length, self.num_heads, self.head_dim) query_states = apply_rotary_pos_emb_vision(query_states.unsqueeze(0), rotary_pos_emb).squeeze(0) key_states = apply_rotary_pos_emb_vision(key_states.unsqueeze(0), rotary_pos_emb).squeeze(0) attention_mask = torch.zeros([1, seq_length, seq_length], device=query_states.device, dtype=torch.bool) for i in range(1, len(cu_seqlens)): attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True query_states = query_states.transpose(0, 1) key_states = key_states.transpose(0, 1) value_states = value_states.transpose(0, 1) attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=0.0) attn_output = attn_output.transpose(0, 1) attn_output = attn_output.reshape(seq_length, -1) attn_output = self.proj(attn_output) return attn_output VISION_ATTENTION_CLASSES = { "eager": VisionAttention, "flash_attention_2": VisionFlashAttention2, "sdpa": VisionSdpaAttention, } # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Videollama3 class Videollama3VisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class Videollama3VisionEncoderLayer(nn.Module): def __init__(self, config: Videollama3VisionEncoderConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = VISION_ATTENTION_CLASSES[config._attn_implementation](config=config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Videollama3VisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) # Ignore copy def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: hidden_states = hidden_states + self.self_attn( self.layer_norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb ) hidden_states = hidden_states + self.mlp(self.layer_norm2(hidden_states)) return hidden_states class Videollama3VisionTransformerEncoder(nn.Module): def __init__(self, config: Videollama3VisionEncoderConfig): super().__init__() self.config = config head_dim = config.hidden_size // config.num_attention_heads self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) self.layers = nn.ModuleList([Videollama3VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def rot_pos_emb(self, grid_sizes, merge_sizes): pos_ids = [] for (t, h, w), merge_size in zip(grid_sizes, merge_sizes): hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) hpos_ids = hpos_ids.reshape( h // merge_size, merge_size, w // merge_size, merge_size, ) hpos_ids = hpos_ids.permute(0, 2, 1, 3) hpos_ids = hpos_ids.flatten() wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) wpos_ids = wpos_ids.reshape( h // merge_size, merge_size, w // merge_size, merge_size, ) wpos_ids = wpos_ids.permute(0, 2, 1, 3) wpos_ids = wpos_ids.flatten() pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) pos_ids = torch.cat(pos_ids, dim=0) max_grid_size = grid_sizes[:, 1:].max() rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) return rotary_pos_emb def forward(self, hidden_states, grid_sizes, merge_sizes) -> torch.Tensor: rotary_pos_emb = self.rot_pos_emb(grid_sizes, merge_sizes) cu_seqlens = torch.repeat_interleave(grid_sizes[:, 1] * grid_sizes[:, 2], grid_sizes[:, 0]).cumsum(dim=0, dtype=torch.int32) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) for blk in self.layers: if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( blk.__call__, hidden_states, cu_seqlens, rotary_pos_emb ) else: hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) return hidden_states class Videollama3VisionEncoderModel(PreTrainedModel): config_class = Videollama3VisionEncoderConfig base_model_prefix = "videollama3" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = [ "Videollama3VisionEncoderLayer", "Videollama3VisionEmbeddings", ] _supports_flash_attn_2 = True _supports_sdpa = True def __init__(self, config: Videollama3VisionEncoderConfig): super().__init__(config=config) embed_dim = config.hidden_size self.embeddings = Videollama3VisionEmbeddings(config) self.encoder = Videollama3VisionTransformerEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.post_init() def forward(self, pixel_values, grid_sizes, merge_sizes=None) -> torch.Tensor: hidden_states = self.embeddings(pixel_values) hidden_states = self.encoder(hidden_states, grid_sizes, merge_sizes) hidden_states = self.post_layernorm(hidden_states) hidden_states_chunks = hidden_states.split(grid_sizes.prod(dim=1).tolist(), dim=0) outputs = [] for hidden_states, grid_size, merge_size in zip(hidden_states_chunks, grid_sizes, merge_sizes): # NOTE: previous implementation, which supports downsampling with any factor c = hidden_states.shape[-1] hidden_states = hidden_states.view( grid_size[0], grid_size[1] // merge_size, grid_size[2] // merge_size, merge_size, merge_size, c ).permute(0, 1, 3, 2, 4, 5) hidden_states = hidden_states.reshape( grid_size[0], grid_size[1], grid_size[2], c ).permute(0, 3, 1, 2) hidden_states = torch.nn.functional.interpolate( hidden_states, size=(grid_size[1] // merge_size, grid_size[2] // merge_size), mode='bilinear' ) hidden_states = hidden_states.permute(0, 2, 3, 1).view(-1, c) # NOTE: simplified implementation, which only supports downsampling with integer factor # NOTE: this implementation is mathematically equivalent to the previous one when merge_size is 1 or 2 but may cause slightly different results # hidden_states = hidden_states.view(-1, merge_size * merge_size, hidden_states.size(-1)) # hidden_states = hidden_states.mean(dim=1) outputs.append(hidden_states) return torch.cat(outputs, dim=0) def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Embedding): default_flax_embed_init(module.weight) elif isinstance(module, VisionAttention): nn.init.xavier_uniform_(module.q_proj.weight) nn.init.xavier_uniform_(module.k_proj.weight) nn.init.xavier_uniform_(module.v_proj.weight) nn.init.xavier_uniform_(module.out_proj.weight) nn.init.zeros_(module.q_proj.bias) nn.init.zeros_(module.k_proj.bias) nn.init.zeros_(module.v_proj.bias) nn.init.zeros_(module.out_proj.bias) elif isinstance(module, Videollama3VisionMLP): nn.init.xavier_uniform_(module.fc1.weight) nn.init.xavier_uniform_(module.fc2.weight) nn.init.normal_(module.fc1.bias, std=1e-6) nn.init.normal_(module.fc2.bias, std=1e-6) elif isinstance(module, (nn.Linear, nn.Conv2d)): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)