Cyril666 commited on
Commit
944da37
·
verified ·
1 Parent(s): f952eda

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -161
README.md CHANGED
@@ -1,199 +1,138 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
 
 
 
 
 
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
 
 
 
 
 
 
 
77
 
78
- ### Training Data
 
 
 
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - multi-modal
5
+ - large-language-model
6
+ - video-language-model
7
+ license: apache-2.0
8
+ datasets:
9
+ - lmms-lab/LLaVA-OneVision-Data
10
+ - allenai/pixmo-docs
11
+ - HuggingFaceM4/Docmatix
12
+ - lmms-lab/LLaVA-Video-178K
13
+ - ShareGPT4Video/ShareGPT4Video
14
+ language:
15
+ - en
16
+ metrics:
17
+ - accuracy
18
+ pipeline_tag: visual-question-answering
19
  ---
20
 
 
21
 
22
+ <p align="center">
23
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/626938b16f8f86ad21deb989/tt5KYnAUmQlHtfB1-Zisl.png" width="150" style="margin-bottom: 0.2;"/>
24
+ <p>
25
 
26
 
27
+ <h3 align="center"><a href="https://arxiv.org/abs/2406.07476">VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding</a></h3>
28
 
29
+ <h5 align="center">
30
 
31
+ [\[🤗 HF Demo\]](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2)
32
 
33
+ </h5>
34
 
 
35
 
36
+ <h5 align="center"> If you like our project, please give us a star ⭐ on <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3">Github</a> for the latest update. </h5>
 
 
 
 
 
 
37
 
 
38
 
39
+ ## 📰 News
40
+ <!-- * **[2024.01.23]** 👋👋 Update technical report. If you have works closely related to VideoLLaMA3 but not mentioned in the paper, feel free to let us know.
41
+ * **[2024.01.22]** 🔥🔥 [Online Demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2) is available. -->
42
+ * **[2024.01.22]** Release models and inference code of VideoLLaMA 3.
43
 
44
+ ## 🌟 Introduction
45
+ VideoLLaMA 3 represents a state-of-the-art series of multimodal foundation models designed to excel in both image and video understanding tasks. Leveraging advanced architectures, VideoLLaMA 3 demonstrates exceptional capabilities in processing and interpreting visual content across various contexts. These models are specifically designed to address complex multimodal challenges, such as integrating textual and visual information, extracting insights from sequential video data, and performing high-level reasoning over both dynamic and static visual scenes.
 
46
 
 
47
 
 
48
 
 
49
 
 
50
 
51
+ ## 🌎 Model Zoo
52
+ | Model | Base Model | HF Link |
53
+ | -------------------- | ------------ | ------------------------------------------------------------ |
54
+ | VideoLLaMA3-7B | Qwen2.5-7B | [DAMO-NLP-SG/VideoLLaMA3-7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA3-7B) |
55
+ | VideoLLaMA3-2B | Qwen2.5-1.5B | [DAMO-NLP-SG/VideoLLaMA3-2B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA3-2B) |
56
+ | VideoLLaMA3-7B-Image | Qwen2.5-7B | [DAMO-NLP-SG/VideoLLaMA3-7B-Image](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA3-7B-Image) |
57
+ | VideoLLaMA3-2B-Image (**This Checkpoint**) | Qwen2.5-1.5B | [DAMO-NLP-SG/VideoLLaMA3-2B-Image](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA3-2B-Image) |
58
 
59
+ We also upload the tuned vision encoder of VideoLLaMA3-7B for wider application:
60
 
61
+ | Model | Base Model | HF Link |
62
+ | ----------------------------- | ------------------------- | ------------------------------------------------------------ |
63
+ | VideoLLaMA3-7B Vision Encoder | siglip-so400m-patch14-384 | [DAMO-NLP-SG/VL3-SigLIP-NaViT](https://huggingface.co/DAMO-NLP-SG/VL3-SigLIP-NaViT) |
64
 
 
65
 
 
66
 
67
+ ## 🚀 Main Results
68
 
 
69
 
70
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/626938b16f8f86ad21deb989/70k7477DnCImzlCwZtM5e.png">
71
 
72
+ * \* denotes the reproduced results.
73
 
74
+ ## 🤖 Quick Start
75
+ ```python
76
+ import torch
77
+ from transformers import AutoModelForCausalLM, AutoProcessor, AutoModel, AutoImageProcessor
78
 
79
+ model_name = "DAMO-NLP-SG/VideoLLaMA3-2B-Image"
80
 
81
+ model = AutoModelForCausalLM.from_pretrained(
82
+ model_name,
83
+ trust_remote_code=True,
84
+ device_map="auto",
85
+ torch_dtype=torch.bfloat16,
86
+ attn_implementation="flash_attention_2",
87
+ )
88
+ processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
89
 
90
+ # Image conversation
91
+ conversation = [
92
+ {
93
+ "role": "user",
94
+ "content": [
95
+ {"type": "image", "data": {"image_path": "https://github.com/DAMO-NLP-SG/VideoLLaMA3/blob/main/assets/sora.png?raw=true"}},
96
+ {"type": "text", "data": "What is the woman wearing?"},
97
+ ]
98
+ }
99
+ ]
100
 
101
+ inputs = processor(conversation=conversation, return_tensors="pt")
102
+ inputs = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
103
+ if "pixel_values" in inputs:
104
+ inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
105
+ output_ids = model.generate(**inputs, max_new_tokens=128)
106
+ response = processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
107
+ print(response)
108
+ ```
109
 
 
110
 
111
+ ## Citation
112
 
113
+ If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX:
114
+ ```bibtex
115
+ @article{damonlpsg2025videollama3,
116
+ title={VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Understanding},
117
+ author={Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, Deli Zhao},
118
+ journal={arXiv preprint arXiv:2501.xxxxx},
119
+ year={2025},
120
+ url = {https://arxiv.org/abs/2501.xxxxx}
121
+ }
122
 
123
+ @article{damonlpsg2024videollama2,
124
+ title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs},
125
+ author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong},
126
+ journal={arXiv preprint arXiv:2406.07476},
127
+ year={2024},
128
+ url = {https://arxiv.org/abs/2406.07476}
129
+ }
130
 
131
+ @article{damonlpsg2023videollama,
132
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
133
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
134
+ journal = {arXiv preprint arXiv:2306.02858},
135
+ year = {2023},
136
+ url = {https://arxiv.org/abs/2306.02858}
137
+ }
138
+ ```