File size: 21,937 Bytes
0c5b101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# Adopted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py.
# Below is the original copyright:
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for VideoLLaMA3."""

import math
from typing import Dict, List, Optional, Union

import numpy as np

import torch
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_utils import ImageInput
from transformers.image_transforms import (
    convert_to_rgb,
    resize,
    to_channel_dimension_format,
)
from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    VideoInput,
    get_image_size,
    infer_channel_dimension_format,
    is_scaled_image,
    is_valid_image,
    make_list_of_images,
    to_numpy_array,
)
from transformers.utils import TensorType, is_vision_available, logging


logger = logging.get_logger(__name__)


if is_vision_available():
    from PIL import Image


def is_valid_video(video) -> bool:
    if isinstance(video, (list, tuple)):
        return all(is_valid_image(frame) for frame in video)
    elif isinstance(video, np.ndarray):
        return video.ndim == 4
    elif isinstance(video, torch.Tensor):
        return video.ndim == 4
    return False


def make_batched_images(images) -> List[List[ImageInput]]:
    """
    Accepts images in list or nested list format, and makes a list of images for preprocessing.

    Args:
        images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
            The input image.

    Returns:
        list: A list of images.
    """
    if isinstance(images, (list, tuple)):
        # list of images/videos
        if not all(is_valid_video(image) or is_valid_image(image) for image in images):
            raise ValueError(f"Could not make batched images from {images}")
        return images
    elif is_valid_video(images) or is_valid_image(images):
        # single image/video
        return [images]

    raise ValueError(f"Could not make batched images from {images}")


def simple_batched_resize(
    images, factor: int = 28, min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None
):
    min_pixels = min_tokens * factor * factor
    max_pixels = max_tokens * factor * factor

    num_images = 0
    for image in images:
        if is_valid_video(image):
            num_images += len(image)
        else:
            num_images += 1

    image_sizes = []
    for image in images:
        if is_valid_video(image):
            image = image[0]
        if isinstance(image, Image.Image):
            height, width = image.size
        else:
            height, width = get_image_size(image, channel_dim=input_data_format)
        image_sizes.append([height, width])

    tmp_image_sizes = []
    for height, width in image_sizes:
        h_bar = round(height / factor) * factor
        w_bar = round(width / factor) * factor
        if h_bar * w_bar > (max_pixels // num_images):
            beta = math.sqrt((height * width) / (max_pixels // num_images))
            h_bar = math.floor(height / beta / factor) * factor
            w_bar = math.floor(width / beta / factor) * factor
        # per image min_pixels
        if h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = math.ceil(height * beta / factor) * factor
            w_bar = math.ceil(width * beta / factor) * factor
        tmp_image_sizes.append((h_bar, w_bar))
    image_sizes = tmp_image_sizes
    return image_sizes


def batched_resize(
    images, factors: List[int], min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None
):
    image_sizes = []
    for image in images:
        if is_valid_video(image):
            num_frame = len(image)
            image = image[0]
        else:
            num_frame = 1
        if isinstance(image, Image.Image):
            height, width = image.size
        else:
            height, width = get_image_size(image, channel_dim=input_data_format)
        image_sizes.append([num_frame, height, width])

    # global max_pixels
    smart_scale_factors = 1.0
    total_tokens = 0
    for (num_frame, height, width), factor in zip(image_sizes, factors):
        total_tokens += num_frame * math.ceil(height / factor) * math.ceil(width / factor)

    # TODO: add min_pixels
    if total_tokens > max_tokens:
        beta = math.sqrt(total_tokens / max_tokens)
        tmp_image_sizes = []
        for (_, height, width), factor in zip(image_sizes, factors):
            h_bar = math.floor(height / beta / factor) * factor
            w_bar = math.floor(width / beta / factor) * factor
            tmp_image_sizes.append((h_bar, w_bar))
        image_sizes = tmp_image_sizes
    else:
        tmp_image_sizes = []
        for (_, height, width), factor in zip(image_sizes, factors):
            height = round(height / factor) * factor
            width = round(width / factor) * factor
            tmp_image_sizes.append((height, width))
        image_sizes = tmp_image_sizes

    return image_sizes


class Videollama3ImageProcessor(BaseImageProcessor):
    r"""
    Constructs a DAMOVL image processor that dynamically resizes images based on the original images.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use when resizing the image.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image.
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
            Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
        min_pixels (`int`, *optional*, defaults to `56 * 56`):
            The min pixels of the image to resize the image.
        max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
            The max pixels of the image to resize the image.
        patch_size (`int`, *optional*, defaults to 14):
            The spacial patch size of the vision encoder.
    """

    model_input_names = ["pixel_values", "grid_sizes", "merge_sizes"]

    def __init__(
        self,
        do_resize: bool = True,
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        do_rescale: bool = True,
        rescale_factor: Union[int, float] = 1 / 255,
        do_normalize: bool = True,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = True,
        min_tokens: int = 4 * 4,
        max_tokens: int = 16384,
        patch_size: int = 14,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.do_resize = do_resize
        self.resample = resample
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
        self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
        self.min_tokens = min_tokens
        self.max_tokens = max_tokens
        self.patch_size = patch_size
        self.do_convert_rgb = do_convert_rgb

    def _preprocess(
        self,
        images: Union[ImageInput, VideoInput],
        target_size: List[int],
        merge_size: int = 1,
        do_resize: bool = None,
        resample: PILImageResampling = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """
        Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.

        Args:
            images (`ImageInput`):
                Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
            target_size (`List[int]`):
                The target size to resize the image to. Should be a list of two integers: [target_height, target_width].
            merge_size (`int`, *optional*, defaults to `1`):
                The merge size after the vision encoder.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Scale factor to use if rescaling the image.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.   - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        images = make_list_of_images(images)

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if is_scaled_image(images[0]) and do_rescale:
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )
        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        height, width = get_image_size(images[0], channel_dim=input_data_format)
        resized_height, resized_width = height, width
        processed_images = []
        for image in images:
            if do_resize:
                resized_height, resized_width = target_size
                image = resize(
                    image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
                )

            if do_rescale:
                image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)

            if do_normalize:
                image = self.normalize(
                    image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
                )

            image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
            processed_images.append(image)

        patches = np.array(processed_images)
        if data_format == ChannelDimension.LAST:
            patches = patches.transpose(0, 3, 1, 2)
        t = patches.shape[0]
        channel = patches.shape[1]
        grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
        patches = patches.reshape(
            t,
            channel,
            grid_h // merge_size,
            merge_size,
            self.patch_size,
            grid_w // merge_size,
            merge_size,
            self.patch_size,
        )
        patches = patches.transpose(0, 2, 5, 3, 6, 1, 4, 7)
        flatten_patches = patches.reshape(
            t * grid_h * grid_w, channel * self.patch_size * self.patch_size
        )

        return flatten_patches, (t, grid_h, grid_w)

    def preprocess(
        self,
        images: ImageInput,
        do_resize: bool = None,
        resample: PILImageResampling = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = None,
        merge_size: Optional[Union[int, List[int]]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            resample (`int`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
                has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        resample = resample if resample is not None else self.resample
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        merge_size = merge_size if merge_size is not None else self.merge_size
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb

        images = make_batched_images(images)

        if isinstance(merge_size, (list, tuple)):
            assert len(merge_size) == len(images), "Merge size must be the same length as images."
            merge_sizes = merge_size
        else:
            merge_sizes = [merge_size for _ in images]

        if all(merge_size == merge_sizes[0] for merge_size in merge_sizes):
            target_sizes = simple_batched_resize(
                images,
                factor=self.patch_size * merge_sizes[0],
                min_tokens=self.min_tokens,
                max_tokens=self.max_tokens,
                input_data_format=input_data_format,
            )
        else:
            target_sizes = batched_resize(
                images,
                factors=[self.patch_size * merge_size for merge_size in merge_sizes],
                min_tokens=self.min_tokens,
                max_tokens=self.max_tokens,
                input_data_format=input_data_format,
            )

        pixel_values, grid_sizes = [], []
        for image, merge_size, target_size in zip(images, merge_sizes, target_sizes):
            patches, grid_size = self._preprocess(
                image,
                target_size=target_size,
                merge_size=merge_size,
                do_resize=do_resize,
                resample=resample,
                do_rescale=do_rescale,
                rescale_factor=rescale_factor,
                do_normalize=do_normalize,
                image_mean=image_mean,
                image_std=image_std,
                data_format=data_format,
                do_convert_rgb=do_convert_rgb,
                input_data_format=input_data_format,
            )
            pixel_values.append(patches)
            grid_sizes.append(grid_size)

        pixel_values = np.concatenate(pixel_values, axis=0)
        grid_sizes = np.array(grid_sizes)
        merge_sizes = np.array(merge_sizes)

        data = {
            "pixel_values": pixel_values,
            "grid_sizes": grid_sizes,
            "merge_sizes": merge_sizes,
        }

        return BatchFeature(data=data, tensor_type=return_tensors)