--- license: apache-2.0 datasets: - OpenGVLab/VideoChat2-IT - Lin-Chen/ShareGPT4V - liuhaotian/LLaVA-Instruct-150K language: - en metrics: - accuracy library_name: transformers pipeline_tag: visual-question-answering tags: - multimodal large language model - large video-language model ---

VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs

If you like our project, please give us a star ⭐ on Github for the latest update.

## 📰 News * **[2024.10.15]** Release checkpoints of [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) and [VideoLLaMA2.1-7B-16F](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2.1-7B-16F) * **[2024.08.14]** Release checkpoints of [VideoLLaMA2-72B-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-72B-Base) and [VideoLLaMA2-72B](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-72B) * **[2024.07.30]** Release checkpoints of [VideoLLaMA2-8x7B-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) and [VideoLLaMA2-8x7B](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-8x7B). * **[2024.06.25]** 🔥🔥 As of Jun 25, our [VideoLLaMA2-7B-16F](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [MLVU Leaderboard](https://github.com/JUNJIE99/MLVU?tab=readme-ov-file#trophy-mini-leaderboard). * **[2024.06.18]** 🔥🔥 As of Jun 18, our [VideoLLaMA2-7B-16F](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [VideoMME Leaderboard](https://video-mme.github.io/home_page.html#leaderboard). * **[2024.06.17]** 👋👋 Update technical report with the latest results and the missing references. If you have works closely related to VideoLLaMA 2 but not mentioned in the paper, feel free to let us know. * **[2024.06.14]** 🔥🔥 [Online Demo](https://huggingface.co./spaces/lixin4ever/VideoLLaMA2) is available. * **[2024.06.03]** Release training, evaluation, and serving codes of VideoLLaMA 2. ## 🌎 Model Zoo | Model Name | Type | Visual Encoder | Language Decoder | # Training Frames | |:-------------------|:--------------:|:----------------|:------------------|:----------------------:| | [VideoLLaMA2-7B-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) | 8 | | [VideoLLaMA2-7B](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) | 8 | | [VideoLLaMA2-7B-16F-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-7B-16F-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) | 16 | | [VideoLLaMA2-7B-16F](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-7B-16F) | Chat | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) | 16 | | [VideoLLaMA2-8x7B-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 | | [VideoLLaMA2-8x7B](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-8x7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 | | [VideoLLaMA2-72B-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-72B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co./Qwen/Qwen2-72B-Instruct) | 8 | | [VideoLLaMA2-72B](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2-72B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co./Qwen/Qwen2-72B-Instruct) | 8 | | [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) | Base | [siglip-so400m-patch14-384](https://huggingface.co./google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co./Qwen/Qwen2-7B-Instruct) | 16 | | [VideoLLaMA2.1-7B-16F](https://huggingface.co./DAMO-NLP-SG/VideoLLaMA2.1-7B-16F) (**This Checkpoint**) | Chat | [siglip-so400m-patch14-384](https://huggingface.co./google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co./Qwen/Qwen2-7B-Instruct) | 16 | ## 🚀 Main Results ### Multi-Choice Video QA & Video Captioning

### Open-Ended Video QA

## 🤖 Inference with VideoLLaMA2 ```python import sys sys.path.append('./') from videollama2 import model_init, mm_infer from videollama2.utils import disable_torch_init def inference(): disable_torch_init() # Video Inference modal = 'video' modal_path = 'assets/cat_and_chicken.mp4' instruct = 'What animals are in the video, what are they doing, and how does the video feel?' # Image Inference modal = 'image' modal_path = 'assets/sora.png' instruct = 'What is the woman wearing, what is she doing, and how does the image feel?' model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B-16F' model, processor, tokenizer = model_init(model_path) output = mm_infer(processor[modal](modal_path), instruct, model=model, tokenizer=tokenizer, do_sample=False, modal=modal) print(output) if __name__ == "__main__": inference() ``` ## Citation If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX: ```bibtex @article{damonlpsg2024videollama2, title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs}, author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong}, journal={arXiv preprint arXiv:2406.07476}, year={2024}, url = {https://arxiv.org/abs/2406.07476} } @article{damonlpsg2023videollama, title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding}, author = {Zhang, Hang and Li, Xin and Bing, Lidong}, journal = {arXiv preprint arXiv:2306.02858}, year = {2023}, url = {https://arxiv.org/abs/2306.02858} } ```