Cyril666 commited on
Commit
50d747a
·
verified ·
1 Parent(s): 0e04069

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -170
README.md CHANGED
@@ -1,199 +1,112 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - visual-encoder
5
+ - multi-modal-large-language-model
6
+ license: apache-2.0
7
+ language:
8
+ - en
9
+ base_model:
10
+ - google/siglip-so400m-patch14-384
11
+ pipeline_tag: image-feature-extraction
12
  ---
13
 
 
14
 
15
+ <p align="center">
16
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/626938b16f8f86ad21deb989/543Eaf__U-a9Z72LPGWgC.png" width="150" style="margin-bottom: 0.2;"/>
17
+ <p>
18
 
19
 
20
+ <h3 align="center"><a href="https://arxiv.org/abs/2501.13106">VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding</a></h3>
21
 
22
+ <h5 align="center"> If you like our project, please give us a star ⭐ on <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3">Github</a> for the latest update. </h5>
23
 
 
24
 
25
+ ## 🌟 Introduction
26
+ This model serves as the visual encoder in VideoLLaMA3.
27
 
28
+ VideoLLaMA3 leverages the Any-resolution Vision Tokenization (AVT) approach to dynamically process images and videos of varying resolutions. This is accomplished by adapting the pre-trained vision encoder (based on ViT architecture) to use 2D-RoPE (Rotary Position Embeddings), replacing the absolute position embeddings traditionally used in ViT.
29
 
30
+ With AVT, VideoLLaMA3 is able to represent images and videos with greater detail across different resolutions, enriching the vision tokens with more information. To ensure seamless integration with AVT, we fine-tune both the vision encoder and the projector during the Vision Encoder Adaptation stage (Stage #1 in the VideoLLaMA3 training pipeline) using scene images, document data, and scene images with text.
 
 
 
 
 
 
31
 
32
+ Before training, the model parameters and architecture are initialized from [SigLip](https://huggingface.co/google/siglip-so400m-patch14-384).
33
 
34
+ ## 🚀 Model Porfermance
35
 
36
+ | Model | GQA | AI2D | ChartQA | DocVQA<sub>val</sub> | MME |
37
+ |---------------------------------|------------|------------|-------------|--------------------------|------------|
38
+ | clip-vit-large-patch14-336 | 61.50 | 56.28 | 18.32 | 24.86 | **1668.41**|
39
+ | dfn5B-clip-vit-h-14-378 | 62.70 | 56.87 | 16.40 | 23.09 | 1665.35 |
40
+ | siglip-so400m-patch14-384 | **62.92** | **57.12** | **22.44** | **31.32** | 1667.92 |
41
 
42
+ * A more detailed analysis can be found in our [paper](https://arxiv.org/abs/2501.13106).
43
 
 
44
 
 
45
 
46
+ ## 🤖 Quick Start
47
+ ```python
48
+ import torch
49
+ from transformers import AutoModelForCausalLM, AutoProcessor, AutoModel, AutoImageProcessor
50
 
51
+ model_name = "DAMO-NLP-SG/VL3-SigLIP-NaViT"
52
 
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ model_name,
55
+ trust_remote_code=True,
56
+ device_map="auto",
57
+ torch_dtype=torch.bfloat16,
58
+ attn_implementation="flash_attention_2",
59
+ )
60
+ processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
61
 
62
+ # Video conversation
63
+ conversation = [
64
+ {"role": "system", "content": "You are a helpful assistant."},
65
+ {
66
+ "role": "user",
67
+ "content": [
68
+ {"type": "video", "data": {"video_path": "https://github.com/DAMO-NLP-SG/VideoLLaMA3/raw/refs/heads/main/assets/cat_and_chicken.mp4", "fps": 1, "max_frames": 128}},
69
+ {"type": "text", "data": "What is the cat doing?"},
70
+ ]
71
+ },
72
+ ]
73
 
74
+ inputs = processor(conversation=conversation, return_tensors="pt")
75
+ inputs = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
76
+ if "pixel_values" in inputs:
77
+ inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
78
+ output_ids = model.generate(**inputs, max_new_tokens=128)
79
+ response = processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
80
+ print(response)
81
+ ```
82
 
 
83
 
 
84
 
85
+ ## Citation
86
 
87
+ If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX:
88
+ ```bibtex
89
+ @article{damonlpsg2025videollama3,
90
+ title={VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Understanding},
91
+ author={Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, Deli Zhao},
92
+ journal={arXiv preprint arXiv:2501.xxxxx},
93
+ year={2025},
94
+ url = {https://arxiv.org/abs/2501.xxxxx}
95
+ }
96
 
97
+ @article{damonlpsg2024videollama2,
98
+ title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs},
99
+ author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong},
100
+ journal={arXiv preprint arXiv:2406.07476},
101
+ year={2024},
102
+ url = {https://arxiv.org/abs/2406.07476}
103
+ }
104
 
105
+ @article{damonlpsg2023videollama,
106
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
107
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
108
+ journal = {arXiv preprint arXiv:2306.02858},
109
+ year = {2023},
110
+ url = {https://arxiv.org/abs/2306.02858}
111
+ }
112
+ ```