|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import logging
|
|
import argparse
|
|
import json
|
|
from datetime import datetime
|
|
from torch.utils.data import DataLoader, WeightedRandomSampler, random_split, RandomSampler, SequentialSampler
|
|
from prepare_data import SpectrogramDataset, collate_fn
|
|
from train_model import (
|
|
AudioResNet,
|
|
train_one_epoch,
|
|
validate_one_epoch,
|
|
evaluate_model,
|
|
plot_confusion_matrix,
|
|
device
|
|
)
|
|
from sklearn.metrics import classification_report, confusion_matrix
|
|
import numpy as np
|
|
import os
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger()
|
|
fh = logging.FileHandler('finish_training.log')
|
|
fh.setLevel(logging.INFO)
|
|
ch = logging.StreamHandler()
|
|
ch.setLevel(logging.INFO)
|
|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
fh.setFormatter(formatter)
|
|
ch.setFormatter(formatter)
|
|
logger.addHandler(fh)
|
|
logger.addHandler(ch)
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train Sample Classifier Model')
|
|
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
|
|
return parser.parse_args()
|
|
|
|
def load_config(config_path):
|
|
if not os.path.exists(config_path):
|
|
raise FileNotFoundError(f"Config file not found: {config_path}")
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
return config
|
|
|
|
def train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, device, patience=10, max_epochs=50):
|
|
best_loss = float('inf')
|
|
patience_counter = 0
|
|
|
|
for epoch in range(max_epochs):
|
|
train_loss, train_accuracy = train_one_epoch(model, train_loader, criterion, optimizer, device)
|
|
val_loss, val_accuracy = validate_one_epoch(model, val_loader, criterion, device)
|
|
|
|
log_message = (f'Epoch {epoch + 1}:\n'
|
|
f'Training Loss: {train_loss:.4f}, Training Accuracy: {train_accuracy:.4f}, '
|
|
f'Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}\n')
|
|
logging.info(log_message)
|
|
|
|
scheduler.step(val_loss)
|
|
current_lr = optimizer.param_groups[0]['lr']
|
|
logging.info(f'Current learning rate: {current_lr}')
|
|
|
|
if val_loss < best_loss:
|
|
best_loss = val_loss
|
|
patience_counter = 0
|
|
torch.save(model.state_dict(), 'best_model.pth')
|
|
else:
|
|
patience_counter += 1
|
|
|
|
if patience_counter >= patience:
|
|
logging.info('Early stopping triggered')
|
|
break
|
|
|
|
if (epoch + 1) % 10 == 0:
|
|
checkpoint_path = f'checkpoint_epoch_{epoch + 1}.pth'
|
|
torch.save(model.state_dict(), checkpoint_path)
|
|
logging.info(f'Model saved to {checkpoint_path}')
|
|
|
|
def main():
|
|
try:
|
|
args = parse_args()
|
|
config = load_config(args.config)
|
|
|
|
dataset = SpectrogramDataset(config, config['directory'], process_new=True)
|
|
if len(dataset) == 0:
|
|
raise ValueError("The dataset is empty. Please check the data loading process.")
|
|
num_classes = len(dataset.label_to_index)
|
|
class_names = list(dataset.label_to_index.keys())
|
|
|
|
train_size = int(0.7 * len(dataset))
|
|
val_size = int(0.15 * len(dataset))
|
|
test_size = len(dataset) - train_size - val_size
|
|
train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size])
|
|
|
|
train_labels = [dataset.labels[i] for i in train_dataset.indices]
|
|
class_counts = np.bincount(train_labels)
|
|
class_weights = 1. / class_counts
|
|
sample_weights = class_weights[train_labels]
|
|
sampler = WeightedRandomSampler(sample_weights, len(sample_weights))
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], collate_fn=collate_fn, sampler=sampler)
|
|
val_loader = DataLoader(val_dataset, batch_size=config['batch_size'], collate_fn=collate_fn, sampler=RandomSampler(val_dataset))
|
|
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], collate_fn=collate_fn, sampler=SequentialSampler(test_dataset))
|
|
|
|
|
|
best_params = {'learning_rate': 0.00014687223021475341, 'weight_decay': 2.970399818935859e-05, 'dropout_rate': 0.36508234143710705}
|
|
|
|
model = AudioResNet(num_classes=num_classes, dropout_rate=best_params['dropout_rate']).to(device)
|
|
criterion = nn.NLLLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=best_params['learning_rate'], weight_decay=best_params['weight_decay'])
|
|
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3)
|
|
|
|
|
|
if os.path.exists('checkpoint_epoch_50.pth'):
|
|
model.load_state_dict(torch.load('checkpoint_epoch_50.pth'))
|
|
logging.info("Loaded the best model from previous training.")
|
|
|
|
train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, device, patience=config['patience'], max_epochs=50)
|
|
|
|
model.load_state_dict(torch.load('checkpoint_epoch_50.pth'))
|
|
evaluate_model(model, test_loader, device, class_names)
|
|
except Exception as e:
|
|
logging.error(f"An error occurred: {e}")
|
|
|
|
if __name__ == '__main__':
|
|
main() |