--- base_model: - CultriX/SeQwence-14B-EvolMerge - allknowingroger/QwenStock3-14B - VAGOsolutions/SauerkrautLM-v2-14b-DPO - allknowingroger/QwenSlerp6-14B - CultriX/Qwen2.5-14B-Wernicke - CultriX/SeQwence-14Bv1 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [CultriX/SeQwence-14Bv1](https://huggingface.co./CultriX/SeQwence-14Bv1) as a base. ### Models Merged The following models were included in the merge: * [CultriX/SeQwence-14B-EvolMerge](https://huggingface.co./CultriX/SeQwence-14B-EvolMerge) * [allknowingroger/QwenStock3-14B](https://huggingface.co./allknowingroger/QwenStock3-14B) * [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co./VAGOsolutions/SauerkrautLM-v2-14b-DPO) * [allknowingroger/QwenSlerp6-14B](https://huggingface.co./allknowingroger/QwenSlerp6-14B) * [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co./CultriX/Qwen2.5-14B-Wernicke) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO parameters: weight: 0.25 # Prioritize top IFEval density: 0.6 # Keep a large portion for strong factual baseline - model: allknowingroger/QwenSlerp6-14B parameters: weight: 0.25 # High weight for MATH and balanced reasoning density: 0.6 # Retain robust reasoning capabilities - model: CultriX/SeQwence-14B-EvolMerge parameters: weight: 0.20 # Important for best BBH and near-top MuSR density: 0.5 # Moderate density to ensure these strengths blend well - model: CultriX/Qwen2.5-14B-Wernicke parameters: weight: 0.15 # Adds top GPQA performance density: 0.5 # Sufficient to preserve QA strengths - model: allknowingroger/QwenStock3-14B parameters: weight: 0.15 # For top MMLU-PRO, enhancing domain knowledge density: 0.5 # Balanced integration of diverse subject expertise base_model: CultriX/SeQwence-14Bv1 merge_method: dare_ties parameters: normalize: true # Ensures parameter scaling compatibility int8_mask: true # Memory and computational efficiency dtype: bfloat16 adaptive_merge_parameters: task_weights: IFEval: 1.2 # Emphasize instruction-following and formatting adherence BBH: 1.2 # Maintain strong performance in challenging reasoning tasks MATH_Lvl_5: 1.3 # Ensure domain expertise in competitive math problems GPQA: 1.3 # Leverage graduate-level knowledge capabilities MuSR: 1.1 # Enhance multistep reasoning on complex tasks MMLU_PRO: 1.2 # Ensure robust multitask domain understanding smoothing_factor: 0.2 # Moderate blending for stable integration gradient_clipping: 1.0 # Prevent over-contribution from any single model ```