File size: 2,120 Bytes
bc9c49d 80b636a bc9c49d 0280a11 9950b41 6d56539 a6e4e86 9950b41 bc9c49d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- abideen/NexoNimbus-7B
- fblgit/UNA-TheBeagle-7b-v1
- argilla/distilabeled-Marcoro14-7B-slerp
language:
- en
pipeline_tag: text-generation
---
MergeTrix-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [abideen/NexoNimbus-7B](https://huggingface.co./abideen/NexoNimbus-7B)
* [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co./fblgit/UNA-TheBeagle-7b-v1)
* [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp)
# MergeTrix-7B-GGUF
Quantisized versions of MergeTrix-7B. Supports:
- mergetrix-7b.Q4_K_M.gguf (4.37GB): medium, balanced quality
- mergetrix-7b.Q5_K_S.gguf (5 GB): large, low quality loss
- mergetrix-7b.Q5_K_M.gguf (5.13 GB): large, very low quality loss
- mergetrix-7b.Q6_K.gguf (5.94 GB): very large, extremely low quality loss
## 🧩 Configuration
```yaml
models:
- model: udkai/Turdus
# No parameters necessary for base model
- model: abideen/NexoNimbus-7B
parameters:
density: 0.53
weight: 0.4
- model: fblgit/UNA-TheBeagle-7b-v1
parameters:
density: 0.53
weight: 0.3
- model: argilla/distilabeled-Marcoro14-7B-slerp
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: udkai/Turdus
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "CultriX/MergeTrix-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |