File size: 2,120 Bytes
bc9c49d
 
 
 
 
 
 
 
 
80b636a
 
 
bc9c49d
 
0280a11
 
 
 
 
9950b41
6d56539
a6e4e86
 
 
 
9950b41
bc9c49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- abideen/NexoNimbus-7B
- fblgit/UNA-TheBeagle-7b-v1
- argilla/distilabeled-Marcoro14-7B-slerp
language:
- en
pipeline_tag: text-generation
---

MergeTrix-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [abideen/NexoNimbus-7B](https://huggingface.co./abideen/NexoNimbus-7B)
* [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co./fblgit/UNA-TheBeagle-7b-v1)
* [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp)

# MergeTrix-7B-GGUF
Quantisized versions of MergeTrix-7B. Supports:
-  mergetrix-7b.Q4_K_M.gguf (4.37GB): medium, balanced quality
-  mergetrix-7b.Q5_K_S.gguf (5 GB): large, low quality loss
-  mergetrix-7b.Q5_K_M.gguf (5.13 GB): large, very low quality loss
-  mergetrix-7b.Q6_K.gguf (5.94 GB): very large, extremely low quality loss


## 🧩 Configuration

```yaml
models:
  - model: udkai/Turdus
    # No parameters necessary for base model
  - model: abideen/NexoNimbus-7B
    parameters:
      density: 0.53
      weight: 0.4
  - model: fblgit/UNA-TheBeagle-7b-v1
    parameters:
      density: 0.53
      weight: 0.3
  - model: argilla/distilabeled-Marcoro14-7B-slerp
    parameters:
      density: 0.53
      weight: 0.3
merge_method: dare_ties
base_model: udkai/Turdus
parameters:
  int8_mask: true
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "CultriX/MergeTrix-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```