--- tags: - merge - mergekit - lazymergekit - CultriX/MonaTrix-v4 - mlabonne/OmniTruthyBeagle-7B-v0 - Kukedlc/NeuralMaxime-7B-slerp - CultriX/NeuralTrixlaser-bf16 base_model: - CultriX/MonaTrix-v4 - mlabonne/OmniTruthyBeagle-7B-v0 - Kukedlc/NeuralMaxime-7B-slerp - CultriX/NeuralTrixlaser-bf16 --- # MergeCeption-7B-v1 MergeCeption-7B-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [CultriX/MonaTrix-v4](https://huggingface.co./CultriX/MonaTrix-v4) * [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co./mlabonne/OmniTruthyBeagle-7B-v0) * [Kukedlc/NeuralMaxime-7B-slerp](https://huggingface.co./Kukedlc/NeuralMaxime-7B-slerp) * [CultriX/NeuralTrixlaser-bf16](https://huggingface.co./CultriX/NeuralTrixlaser-bf16) ## 🧩 Configuration ```yaml base_model: CultriX/MonaTrix-v4 merge_method: dare_ties models: - model: CultriX/MonaTrix-v4 parameters: density: 0.65 weight: 0.4 - model: mlabonne/OmniTruthyBeagle-7B-v0 parameters: density: 0.65 weight: 0.4 - model: Kukedlc/NeuralMaxime-7B-slerp parameters: density: 0.65 weight: 0.4 - model: CultriX/NeuralTrixlaser-bf16 parameters: density: 0.6 weight: 0.35 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "CultriX/MergeCeption-7B-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```