--- license: apache-2.0 datasets: - EleutherAI/pile - togethercomputer/RedPajama-Data-1T language: - en - zh - de - fr - es - pt - ru - it - ja - ko - vi - ar thumbnail: tags: - rwkv - text-generation - causal-lm - ggml inference: false --- # RWKV-4 World GGML ### This repository contains quantized conversions of the current RWKV-4 World checkpoints. *For use with frontends that support GGML quantized RWKV models, such as rwkv.cpp and KoboldCpp.* *Last updated on 2023-09-28.* **Description:** - The motivation behind these quantizations was that latestissue's quants were missing the 0.1B and 0.4B models. The rest of the models can be found here: [latestissue/rwkv-4-world-ggml-quantized](https://huggingface.co./latestissue/rwkv-4-world-ggml-quantized) # RAM USAGE Model | Starting RAM usage (KoboldCpp) :--:|:--: RWKV-4-World-0.1B.q4_0.bin | 289.3 MiB RWKV-4-World-0.1B.q4_1.bin | 294.7 MiB RWKV-4-World-0.1B.q5_0.bin | 300.2 MiB RWKV-4-World-0.1B.q5_1.bin | 305.7 MiB RWKV-4-World-0.1B.q8_0.bin | 333.1 MiB RWKV-4-World-0.1B.f16.bin | 415.3 MiB | RWKV-4-World-0.4B.q4_0.bin | 484.1 MiB RWKV-4-World-0.4B.q4_1.bin | 503.7 MiB RWKV-4-World-0.4B.q5_0.bin | 523.1 MiB RWKV-4-World-0.4B.q5_1.bin | 542.7 MiB RWKV-4-World-0.4B.q8_0.bin | 640.2 MiB RWKV-4-World-0.4B.f16.bin | 932.7 MiB | RWKV-4-World-1.5B.q4_0.bin | 1.2 GiB RWKV-4-World-1.5B.q4_1.bin | 1.3 GiB RWKV-4-World-1.5B.q5_0.bin | 1.4 GiB RWKV-4-World-1.5B.q5_1.bin | 1.5 GiB RWKV-4-World-1.5B.q8_0.bin | 1.9 GiB RWKV-4-World-1.5B.f16.bin | 3.0 GiB **Notes:** - rwkv.cpp [[0df970a]](https://github.com/saharNooby/rwkv.cpp/tree/0df970a6adddd4b938795f92e660766d1e2c1c1f) was used for conversion and quantization. First they were converted to f16 ggml files, then quantized. - KoboldCpp [[bc841ec]](https://github.com/LostRuins/koboldcpp/tree/bc841ec30232036a1e231c0b057689abc3aa00cf) was used to test the model. The original models can be found [here](https://huggingface.co./BlinkDL/rwkv-4-world), and the original model card can be found below. * * * # RWKV-4 World ## Model Description RWKV-4 trained on 100+ world languages (70% English, 15% multilang, 15% code). World = Some_Pile + Some_RedPajama + Some_OSCAR + All_Wikipedia + All_ChatGPT_Data_I_can_find XXXtuned = finetune of World on MC4, OSCAR, wiki, etc. How to use: * use https://github.com/josStorer/RWKV-Runner for GUI * use latest rwkv pip package (0.8.0+) * use https://github.com/BlinkDL/ChatRWKV/blob/main/v2/benchmark_world.py and https://github.com/BlinkDL/ChatRWKV/blob/main/API_DEMO_WORLD.py to test it The differences between World & Raven: * set pipeline = PIPELINE(model, "rwkv_vocab_v20230424") instead of 20B_tokenizer.json (EXACTLY AS WRITTEN HERE. "rwkv_vocab_v20230424" is included in rwkv 0.7.4+) * use Question/Answer or User/AI or Human/Bot for chat. **DO NOT USE Bob/Alice or Q/A** For 0.1/0.4/1.5B models, use **fp32** for first layer (will overflow in fp16 at this moment - fixable in future), or bf16 if you have 30xx/40xx GPUs. Example strategy: cuda fp32 *1 -> cuda fp16 NOTE: the new greedy tokenizer (https://github.com/BlinkDL/ChatRWKV/blob/main/tokenizer/rwkv_tokenizer.py) will tokenize '\n\n' as one single token instead of ['\n','\n'] QA prompt (replace \n\n in xxx to \n): ``` Question: xxx Answer: ``` and ``` Instruction: xxx Input: xxx Response: ``` A good chat prompt (replace \n\n in xxx to \n): ``` User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: xxx Assistant: ```