File size: 1,410 Bytes
a852d0a
 
84d7088
 
 
b0234a8
 
 
 
7722625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: llama2
datasets:
- vicgalle/alpaca-gpt4
pipeline_tag: text-generation
language:
- en
tags:
- llama-2
---
## Fine-tuning
- Base Model: [NousResearch/Llama-2-7b-hf](https://huggingface.co./NousResearch/Llama-2-7b-hf)
- Dataset for fine-tuning: [vicgalle/alpaca-gpt4](https://huggingface.co./vicgalle/gpt2-alpaca-gpt4)
- Training
  - BitsAndBytesConfig
    ```
    BitsAndBytesConfig(
        load_in_4bit= True,
        bnb_4bit_quant_type= "nf4",
        bnb_4bit_compute_dtype= torch.bfloat16,
        bnb_4bit_use_double_quant= False,
    )
    ```
  - LoRA Config
    ```
    LoraConfig(
        r=16,
        lora_alpha= 8, # alpha = rank * 2 !
        lora_dropout= 0.1,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj"]
    )
    ```
  - Training Arguments
    ```
    TrainingArguments(
        output_dir= "./results",
        num_train_epochs= 1,
        per_device_train_batch_size= 8,
        gradient_accumulation_steps= 2,
        optim = "paged_adamw_8bit",
        save_steps= 1000,
        logging_steps= 30,
        learning_rate= 2e-4,
        weight_decay= 0.001,
        fp16= False,
        bf16= False,
        max_grad_norm= 0.3,
        max_steps= -1,
        warmup_ratio= 0.3,
        group_by_length= True,
        lr_scheduler_type= "linear",
        report_to="wandb",
    )
    ```