--- language: - zh license: apache-2.0 tags: - mt5-small - text2text-generation - natural language understanding - conversational system - task-oriented dialog datasets: - ConvLab/crosswoz metrics: - Dialog acts Accuracy - Dialog acts F1 model-index: - name: mt5-small-nlu-all-crosswoz results: - task: type: text2text-generation name: natural language understanding dataset: type: ConvLab/crosswoz name: CrossWOZ split: test revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0 metrics: - type: Dialog acts Accuracy value: 84.0 name: Accuracy - type: Dialog acts F1 value: 90.1 name: F1 widget: - text: "user: 你好,给我推荐一个评分是5分,价格在100-200元的酒店。" - text: "system: 抱歉,为您搜索了一些经济型酒店都没有健身房。其他类型的一些酒店行吗?比如北京贵都大酒店、北京京仪大酒店这些也是很好的,就是价格高了一些。" inference: parameters: max_length: 100 --- # mt5-small-nlu-all-crosswoz This model is a fine-tuned version of [mt5-small](https://huggingface.co./mt5-small) on [CrossWOZ](https://huggingface.co./datasets/ConvLab/crosswoz) both user and system utterances. Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1