Add paper link
Browse files
README.md
CHANGED
@@ -1,107 +1,110 @@
|
|
1 |
-
---
|
2 |
-
license: llama3.1
|
3 |
-
datasets:
|
4 |
-
- survivi/Llama-3-SynE-Dataset
|
5 |
-
- hfl/stem_zh_instruction
|
6 |
-
- llamafactory/alpaca_zh
|
7 |
-
- llamafactory/alpaca_gpt4_zh
|
8 |
-
- hfl/ruozhiba_gpt4
|
9 |
-
- codingsteven/Llama-3-8B-chat
|
10 |
-
language:
|
11 |
-
- zh
|
12 |
-
base_model:
|
13 |
-
- meta-llama/Llama-3.1-8B
|
14 |
-
model-index:
|
15 |
-
- name: Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
|
16 |
-
results:
|
17 |
-
- task:
|
18 |
-
type: pretraining-evaluation
|
19 |
-
dataset:
|
20 |
-
type: mixed
|
21 |
-
name: Pretraining Evaluation Dataset
|
22 |
-
metrics:
|
23 |
-
- name: exact_match,strict-match (meta_pretrain)
|
24 |
-
type: exact_match
|
25 |
-
value: 0.458555789246616
|
26 |
-
stderr: 0.003519105746208811
|
27 |
-
verified: false
|
28 |
-
- name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
|
29 |
-
type: exact_match
|
30 |
-
value: 0.6442942712332975
|
31 |
-
stderr: 0.005933310420690264
|
32 |
-
verified: false
|
33 |
-
- name: acc,none (meta_mmlu_5shot_pretrain)
|
34 |
-
type: accuracy
|
35 |
-
value: 0.6464178891895741
|
36 |
-
stderr: 0.004034621567546711
|
37 |
-
verified: false
|
38 |
-
- name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
|
39 |
-
type: exact_match
|
40 |
-
value: 0.35804521276595747
|
41 |
-
stderr: 0.004370894189453768
|
42 |
-
verified: false
|
43 |
-
- task:
|
44 |
-
type: chinese-evaluation
|
45 |
-
dataset:
|
46 |
-
type: mixed
|
47 |
-
name: Chinese Evaluation Dataset
|
48 |
-
metrics:
|
49 |
-
- name: exact_match,strict-match (zh_pretrain_multishot)
|
50 |
-
type: exact_match
|
51 |
-
value: 0.37105507425742573
|
52 |
-
stderr: 0.004143191283994466
|
53 |
-
verified: false
|
54 |
-
- name: acc,none (ceval-valid)
|
55 |
-
type: accuracy
|
56 |
-
value: 0.5713224368499257
|
57 |
-
stderr: 0.01292052444857274
|
58 |
-
verified: false
|
59 |
-
- name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
|
60 |
-
type: exact_match
|
61 |
-
value: 0.34843982169390786
|
62 |
-
stderr: 0.01265919137729175
|
63 |
-
verified: false
|
64 |
-
- name: acc,none (cmmlu)
|
65 |
-
type: accuracy
|
66 |
-
value: 0.5689000172681747
|
67 |
-
stderr: 0.004489346390434928
|
68 |
-
verified: false
|
69 |
-
- name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
|
70 |
-
type: exact_match
|
71 |
-
value: 0.37368330167501296
|
72 |
-
stderr: 0.00438421288652232
|
73 |
-
verified: false
|
74 |
-
---
|
75 |
-
# Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
|
76 |
-
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Concat16-Lerp.
|
77 |
-
|
78 |
-
##
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
89 |
-
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
- **
|
102 |
-
- **
|
103 |
-
- **
|
104 |
-
- **
|
105 |
-
- **
|
106 |
-
- **
|
107 |
-
- **
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.1
|
3 |
+
datasets:
|
4 |
+
- survivi/Llama-3-SynE-Dataset
|
5 |
+
- hfl/stem_zh_instruction
|
6 |
+
- llamafactory/alpaca_zh
|
7 |
+
- llamafactory/alpaca_gpt4_zh
|
8 |
+
- hfl/ruozhiba_gpt4
|
9 |
+
- codingsteven/Llama-3-8B-chat
|
10 |
+
language:
|
11 |
+
- zh
|
12 |
+
base_model:
|
13 |
+
- meta-llama/Llama-3.1-8B
|
14 |
+
model-index:
|
15 |
+
- name: Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: pretraining-evaluation
|
19 |
+
dataset:
|
20 |
+
type: mixed
|
21 |
+
name: Pretraining Evaluation Dataset
|
22 |
+
metrics:
|
23 |
+
- name: exact_match,strict-match (meta_pretrain)
|
24 |
+
type: exact_match
|
25 |
+
value: 0.458555789246616
|
26 |
+
stderr: 0.003519105746208811
|
27 |
+
verified: false
|
28 |
+
- name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
|
29 |
+
type: exact_match
|
30 |
+
value: 0.6442942712332975
|
31 |
+
stderr: 0.005933310420690264
|
32 |
+
verified: false
|
33 |
+
- name: acc,none (meta_mmlu_5shot_pretrain)
|
34 |
+
type: accuracy
|
35 |
+
value: 0.6464178891895741
|
36 |
+
stderr: 0.004034621567546711
|
37 |
+
verified: false
|
38 |
+
- name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
|
39 |
+
type: exact_match
|
40 |
+
value: 0.35804521276595747
|
41 |
+
stderr: 0.004370894189453768
|
42 |
+
verified: false
|
43 |
+
- task:
|
44 |
+
type: chinese-evaluation
|
45 |
+
dataset:
|
46 |
+
type: mixed
|
47 |
+
name: Chinese Evaluation Dataset
|
48 |
+
metrics:
|
49 |
+
- name: exact_match,strict-match (zh_pretrain_multishot)
|
50 |
+
type: exact_match
|
51 |
+
value: 0.37105507425742573
|
52 |
+
stderr: 0.004143191283994466
|
53 |
+
verified: false
|
54 |
+
- name: acc,none (ceval-valid)
|
55 |
+
type: accuracy
|
56 |
+
value: 0.5713224368499257
|
57 |
+
stderr: 0.01292052444857274
|
58 |
+
verified: false
|
59 |
+
- name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
|
60 |
+
type: exact_match
|
61 |
+
value: 0.34843982169390786
|
62 |
+
stderr: 0.01265919137729175
|
63 |
+
verified: false
|
64 |
+
- name: acc,none (cmmlu)
|
65 |
+
type: accuracy
|
66 |
+
value: 0.5689000172681747
|
67 |
+
stderr: 0.004489346390434928
|
68 |
+
verified: false
|
69 |
+
- name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
|
70 |
+
type: exact_match
|
71 |
+
value: 0.37368330167501296
|
72 |
+
stderr: 0.00438421288652232
|
73 |
+
verified: false
|
74 |
+
---
|
75 |
+
# Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
|
76 |
+
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Concat16-Lerp.
|
77 |
+
|
78 |
+
## Linked Paper
|
79 |
+
This model is associated with the paper: [Control-LLM](https://arxiv.org/abs/2501.10979).
|
80 |
+
|
81 |
+
## Evaluation Results
|
82 |
+
Here is an overview of the evaluation results and findings:
|
83 |
+
|
84 |
+
### Benchmark Results Table
|
85 |
+
|
86 |
+
The table below summarizes evaluation results across Chinese tasks and original capabilities.
|
87 |
+
|
88 |
+
| **Model** | **CEval** | **CEvalC** | **CMMLU** | **CMMLUC** | **C-Avg** | **BBH** | **MLU** | **MLUP** | **O-Avg** | **Overall** |
|
89 |
+
|--------------------|-----------|------------|-----------|------------|-----------|---------|---------|----------|-----------|-------------|
|
90 |
+
| Llama3.1-8B | 48.3 | 12.8 | 51.1 | 14.1 | 13.9 | 65.2 | 65.4 | 35.5 | 45.9 | 29.9 |
|
91 |
+
| Llama-3-SynE | 57.7 | 22.3 | 57.1 | 22.8 | 22.8 | 61.9 | 64.0 | 32.6 | 42.9 | 32.9 |
|
92 |
+
| Full Param Tune | 59.0 | 40.2 | **60.2** | 44.3 | 43.8 | 64.8 | 64.9 | 35.0 | 45.4 | 44.6 |
|
93 |
+
| Stack Expansion | 56.0 | 32.7 | 55.2 | 33.4 | 33.3 | 62.3 | 65.6 | 35.3 | 44.8 | 39.1 |
|
94 |
+
| **Concat-Lerp** | 57.1 | 34.8 | 57.0 | 37.4 | 37.1 | 64.4 | 64.6 | 35.8 | 45.9 | 41.5 |
|
95 |
+
| Hybrid Expansion | **58.9** | 44.7 | 57.9 | 44.3 | 44.4 | 65.1 | **65.7**| 36.9 | 46.8 | 45.6 |
|
96 |
+
| **Control LLM*** | 57.0 | **44.7** | 56.0 | **44.9** | **44.8** | **68.2**| 65.6 | **37.9** | **48.5** | **46.7** |
|
97 |
+
|
98 |
+
---
|
99 |
+
|
100 |
+
### Explanation:
|
101 |
+
- **CEval**: Chinese Evaluation
|
102 |
+
- **CEvalC**: Chinese Evaluation (CoT - Chain of Thought)
|
103 |
+
- **CMMLU**: Chinese MMLU
|
104 |
+
- **CMMLUC**: Chinese MMLU (CoT)
|
105 |
+
- **C-Avg**: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
|
106 |
+
- **BBH**: BigBench Hard
|
107 |
+
- **MLU**: MMLU (Massive Multitask Language Understanding)
|
108 |
+
- **MLUP**: MMLU Pro
|
109 |
+
- **O-Avg**: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
|
110 |
+
- **Overall**: Combined average across all tasks
|