File size: 1,614 Bytes
02a5449
 
 
 
 
 
 
 
 
 
 
 
 
 
7ec46e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: mit
language:
- en
- kn
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- bilingual
- kannada
- english
---

# Ambari-7B-Base-v0.1

## Overview

Ambari-7B-Base-v0.1 is the first bilingual English/Kannada model in the Ambari series, developed and released by [Cognitivelab.in](https://www.cognitivelab.in/). Based on the Llama2 model by Meta, this 7B parameter model is the outcome of the pretraining stage, involving training on approximately 500 million new Kannada tokens.

## Usage

To use the Ambari-7B-Base-v0.1 model, you can follow the example code below:

```python
# Usage
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM

model = LlamaForCausalLM.from_pretrained('Cognitive-Lab/Ambari-7B-Base-v0.1')
tokenizer = LlamaTokenizer.from_pretrained('Cognitive-Lab/Ambari-7B-Base-v0.1')

prompt = "ಕನ್ನಡದ ಇತಿಹಾಸವನ್ನು ವಿವರವಾಗಿ ತಿಳಿಸಿ"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
decoded_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

print(decoded_output)
```

**Important:** The provided model serves as a foundation and is not designed for independent use. We strongly advise conducting finetuning tailored to your particular task(s) of interest before deploying it in a production environment. Feel free to customize the code according to your specific use case, ensuring that the model undergoes finetuning for optimal performance in your desired application.