CiaraRowles
commited on
Commit
·
33ee32f
1
Parent(s):
9f2539b
Upload runtemporalnetxl.py
Browse files- runtemporalnetxl.py +51 -1
runtemporalnetxl.py
CHANGED
@@ -61,5 +61,55 @@ else:
|
|
61 |
initial_frame_path = os.path.join(frames_dir, "frame0000.png")
|
62 |
last_generated_image = load_image(initial_frame_path)
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
initial_frame_path = os.path.join(frames_dir, "frame0000.png")
|
62 |
last_generated_image = load_image(initial_frame_path)
|
63 |
|
64 |
+
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
65 |
+
controlnet1_path = "CiaraRowles/controlnet-temporalnet-sdxl-1.0"
|
66 |
+
controlnet2_path = "diffusers/controlnet-canny-sdxl-1.0"
|
67 |
|
68 |
+
controlnet = [
|
69 |
+
ControlNetModel.from_pretrained(controlnet1_path, torch_dtype=torch.float16),
|
70 |
+
ControlNetModel.from_pretrained(controlnet2_path, torch_dtype=torch.float16)
|
71 |
+
]
|
72 |
+
#controlnet = ControlNetModel.from_pretrained(controlnet2_path, torch_dtype=torch.float16)
|
73 |
+
|
74 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
75 |
+
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
|
76 |
+
)
|
77 |
+
|
78 |
+
#pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
79 |
+
#pipe.enable_xformers_memory_efficient_attention()
|
80 |
+
pipe.enable_model_cpu_offload()
|
81 |
+
|
82 |
+
generator = torch.manual_seed(7)
|
83 |
+
|
84 |
+
# Loop over the saved frames in numerical order
|
85 |
+
frame_files = sorted(os.listdir(frames_dir), key=frame_number)
|
86 |
+
|
87 |
+
for i, frame_file in enumerate(frame_files):
|
88 |
+
# Use the original video frame to create Canny edge-detected image as the conditioning image for the first ControlNetModel
|
89 |
+
control_image_path = os.path.join(frames_dir, frame_file)
|
90 |
+
control_image = load_image(control_image_path)
|
91 |
+
|
92 |
+
canny_image = np.array(control_image)
|
93 |
+
canny_image = cv2.Canny(canny_image, 25, 200)
|
94 |
+
canny_image = canny_image[:, :, None]
|
95 |
+
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
96 |
+
canny_image = Image.fromarray(canny_image)
|
97 |
+
|
98 |
+
# Generate image
|
99 |
+
image = pipe(
|
100 |
+
prompt, num_inference_steps=20, generator=generator, image=[last_generated_image, canny_image], controlnet_conditioning_scale=[0.6, 0.7]
|
101 |
+
#prompt, num_inference_steps=20, generator=generator, image=canny_image, controlnet_conditioning_scale=0.5
|
102 |
+
).images[0]
|
103 |
+
|
104 |
+
# Save the generated image to output folder
|
105 |
+
output_path = os.path.join(output_frames_dir, f"output{str(i).zfill(4)}.png")
|
106 |
+
image.save(output_path)
|
107 |
+
|
108 |
+
# Save the Canny image for reference
|
109 |
+
canny_image_path = os.path.join(output_frames_dir, f"outputcanny{str(i).zfill(4)}.png")
|
110 |
+
canny_image.save(canny_image_path)
|
111 |
+
|
112 |
+
# Update the last_generated_image with the newly generated image for the next iteration
|
113 |
+
last_generated_image = image
|
114 |
+
|
115 |
+
print(f"Saved generated image for frame {i} to {output_path}")
|