File size: 27,947 Bytes
e5e6e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What was the total amount of current assets reported by The Hershey
    Company for the year 2023?
  sentences:
  - The total AUS for all categories, including alternative investments, equity, fixed
    income, and liquidity products, summed up to $2,812 billion in 2023.
  - The Hershey Company reported a total of current assets amounting to $2,912,103
    for the year 2023.
  - Information on legal proceedings is included in Note 15 to the Consolidated Financial
    Statements.
- source_sentence: What is listed under Item 8 in the document?
  sentences:
  - Chubb Limited further advanced their goal of greater product, customer, and geographical
    diversification with incremental purchases that led to a controlling majority
    interest in Huatai Insurance Group Co. Ltd, owning about 76.5 percent as of July
    1, 2023.
  - Item 8 includes Financial Statements and Supplementary Data.
  - Further, state attorneys general may bring civil actions seeking either injunction
    or an unspecified amount in damages in response to violations of the HIPAA privacy
    and security regulations.
- source_sentence: What were the main factors contributing to the change in net sales
    for fiscal 2022?
  sentences:
  - The decrease in consolidated net sales in fiscal 2022 compared to fiscal 2021
    was primarily attributable to the translation impact of a stronger U.S. dollar,
    a decline in sales from new software releases and video game accessories, partially
    offset by an increase in sales of new gaming hardware and toys and collectibles.
  - We receive payment from the delivery partner subsequent to the transfer of food
    and the payment terms are short-term in nature.
  - Net cash used in investing activities was $30.0 million in the year ended December
    31, 2022, and increased to $73.3 million in the year ended December 31, 2023.
- source_sentence: What informs the ESG disclosures mentioned in the text?
  sentences:
  - Common Equity Tier 1 (CET1) Capital refers to the total of common stock and related
    surplus minus treasury stock, retained earnings, AOCI, and qualifying minority
    interests after factoring in the necessary regulatory adjustments and deductions.
  - Constant currency revenue percentage change is calculated by determining the change
    in current period revenues over prior period revenues where current period foreign
    currency revenues are translated using prior year exchange outstanding rates and
    hedging effects are excluded from revenues of both periods.
  - Our ESG disclosures are also informed by relevant topics identified through third-party
    ESG reporting organizations, frameworks and standards, such as the TCFD.
- source_sentence: How many new aircraft did Delta Air Lines take delivery of in 2023?
  sentences:
  - In 2023, Delta took delivery of 43 aircraft.
  - The listing of our common stock on the NYSE could potentially create a conflict
    between the exchange’s regulatory responsibilities to vigorously oversee the listing
    and trading of securities, on the one hand, and our commercial and economic interest,
    on the other hand.
  - 'The Company''s enterprise DEI Strategy is aligned to the DEI Vision and Mission
    and rests on four core pillars: •Build a workforce of individuals with diverse
    backgrounds, cultures, abilities and perspectives  •Foster a culture of inclusion
    where every individual belongs •Transform talent and business processes to achieve
    equitable opportunities for all •Drive innovation and growth with our business
    to serve diverse markets around the world.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8328571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8614285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9171428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2776190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17228571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09171428571428569
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8328571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8614285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9171428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8082439242024833
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7734971655328796
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7770743874539329
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6914285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8328571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8685714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9185714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6914285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2776190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1737142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09185714285714283
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6914285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8328571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8685714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9185714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8056533729911755
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7695113378684802
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7731633620598676
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6928571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8328571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.87
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.91
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6928571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2776190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09099999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6928571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8328571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.87
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.91
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8031697277454632
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7687063492063488
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.772758974076829
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.67
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8028571428571428
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8628571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9057142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.67
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2676190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17257142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09057142857142855
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.67
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8028571428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8628571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9057142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7882417708737697
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7505816326530609
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7545140112362249
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6557142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7871428571428571
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8171428571428572
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8742857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6557142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2623809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16342857142857142
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08742857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6557142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7871428571428571
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8171428571428572
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8742857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7637005971170125
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7285300453514736
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7336775414052045
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ChristianBernhard/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'How many new aircraft did Delta Air Lines take delivery of in 2023?',
    'In 2023, Delta took delivery of 43 aircraft.',
    'The listing of our common stock on the NYSE could potentially create a conflict between the exchange’s regulatory responsibilities to vigorously oversee the listing and trading of securities, on the one hand, and our commercial and economic interest, on the other hand.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.7        | 0.6914     | 0.6929     | 0.67       | 0.6557     |
| cosine_accuracy@3   | 0.8329     | 0.8329     | 0.8329     | 0.8029     | 0.7871     |
| cosine_accuracy@5   | 0.8614     | 0.8686     | 0.87       | 0.8629     | 0.8171     |
| cosine_accuracy@10  | 0.9171     | 0.9186     | 0.91       | 0.9057     | 0.8743     |
| cosine_precision@1  | 0.7        | 0.6914     | 0.6929     | 0.67       | 0.6557     |
| cosine_precision@3  | 0.2776     | 0.2776     | 0.2776     | 0.2676     | 0.2624     |
| cosine_precision@5  | 0.1723     | 0.1737     | 0.174      | 0.1726     | 0.1634     |
| cosine_precision@10 | 0.0917     | 0.0919     | 0.091      | 0.0906     | 0.0874     |
| cosine_recall@1     | 0.7        | 0.6914     | 0.6929     | 0.67       | 0.6557     |
| cosine_recall@3     | 0.8329     | 0.8329     | 0.8329     | 0.8029     | 0.7871     |
| cosine_recall@5     | 0.8614     | 0.8686     | 0.87       | 0.8629     | 0.8171     |
| cosine_recall@10    | 0.9171     | 0.9186     | 0.91       | 0.9057     | 0.8743     |
| **cosine_ndcg@10**  | **0.8082** | **0.8057** | **0.8032** | **0.7882** | **0.7637** |
| cosine_mrr@10       | 0.7735     | 0.7695     | 0.7687     | 0.7506     | 0.7285     |
| cosine_map@100      | 0.7771     | 0.7732     | 0.7728     | 0.7545     | 0.7337     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 20.82 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 47.65 tokens</li><li>max: 371 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                         | positive                                                                                                                                                                                                                                                                                                     |
  |:-------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What challenges did the company face in its supply chain during fiscal 2021?</code>                                      | <code>During fiscal 2021, we experienced significant disruptions in our supply chain which impacted our ability to ship products from overseas on a timely basis.</code>                                                                                                                                     |
  | <code>Is the information on Legal proceedings in the report straightforward or referenced to another section?</code>           | <code>The information on Legal proceedings called for by Item 3 is incorporated by reference to Note 19 of the Notes to Consolidated Financial Statements in Item 8 of the report.</code>                                                                                                                    |
  | <code>What factors particularly influence sales comparisons and comparable sales growth according to the annual report?</code> | <code>Sales comparisons can also be particularly influenced by certain factors that are beyond our control: fluctuations in currency exchange rates (with respect to our international operations); inflation or deflation and changes in the cost of gasoline and associated competitive conditions.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8122     | 10     | 1.5819        | -                      | -                      | -                      | -                      | -                     |
| 0.9746     | 12     | -             | 0.7909                 | 0.7912                 | 0.7907                 | 0.7723                 | 0.7444                |
| 1.6244     | 20     | 0.6676        | -                      | -                      | -                      | -                      | -                     |
| 1.9492     | 24     | -             | 0.7991                 | 0.7994                 | 0.7983                 | 0.7849                 | 0.7571                |
| 2.4365     | 30     | 0.4321        | -                      | -                      | -                      | -                      | -                     |
| 2.9239     | 36     | -             | 0.8089                 | 0.8048                 | 0.8016                 | 0.7879                 | 0.7637                |
| 3.2487     | 40     | 0.3958        | -                      | -                      | -                      | -                      | -                     |
| **3.8985** | **48** | **-**         | **0.8082**             | **0.8057**             | **0.8032**             | **0.7882**             | **0.7637**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.2.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->