Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: bert-base-cased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: fine_tune_bert-base-cased
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# fine_tune_bert-base-cased
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0842
|
25 |
+
- Precision: 0.9376
|
26 |
+
- Recall: 0.9541
|
27 |
+
- F1: 0.9458
|
28 |
+
- Accuracy: 0.9866
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 64
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 20
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.2667 | 1.0 | 220 | 0.0739 | 0.8619 | 0.9118 | 0.8862 | 0.9776 |
|
60 |
+
| 0.0602 | 2.0 | 440 | 0.0641 | 0.9109 | 0.9357 | 0.9231 | 0.9830 |
|
61 |
+
| 0.0361 | 3.0 | 660 | 0.0594 | 0.9187 | 0.9401 | 0.9293 | 0.9845 |
|
62 |
+
| 0.0234 | 4.0 | 880 | 0.0564 | 0.9233 | 0.9461 | 0.9346 | 0.9854 |
|
63 |
+
| 0.0164 | 5.0 | 1100 | 0.0585 | 0.9211 | 0.9465 | 0.9336 | 0.9856 |
|
64 |
+
| 0.0123 | 6.0 | 1320 | 0.0656 | 0.9212 | 0.9483 | 0.9346 | 0.9850 |
|
65 |
+
| 0.0084 | 7.0 | 1540 | 0.0639 | 0.9290 | 0.9514 | 0.9401 | 0.9864 |
|
66 |
+
| 0.0072 | 8.0 | 1760 | 0.0735 | 0.9325 | 0.9482 | 0.9403 | 0.9862 |
|
67 |
+
| 0.0051 | 9.0 | 1980 | 0.0745 | 0.9319 | 0.9488 | 0.9403 | 0.9856 |
|
68 |
+
| 0.0042 | 10.0 | 2200 | 0.0783 | 0.9308 | 0.9490 | 0.9398 | 0.9858 |
|
69 |
+
| 0.0034 | 11.0 | 2420 | 0.0782 | 0.9337 | 0.9509 | 0.9422 | 0.9862 |
|
70 |
+
| 0.0026 | 12.0 | 2640 | 0.0822 | 0.9328 | 0.9505 | 0.9416 | 0.9858 |
|
71 |
+
| 0.0019 | 13.0 | 2860 | 0.0785 | 0.9335 | 0.9525 | 0.9429 | 0.9862 |
|
72 |
+
| 0.0018 | 14.0 | 3080 | 0.0819 | 0.9382 | 0.9525 | 0.9453 | 0.9865 |
|
73 |
+
| 0.0015 | 15.0 | 3300 | 0.0846 | 0.9349 | 0.9524 | 0.9436 | 0.9863 |
|
74 |
+
| 0.0013 | 16.0 | 3520 | 0.0880 | 0.9353 | 0.9519 | 0.9435 | 0.9860 |
|
75 |
+
| 0.0012 | 17.0 | 3740 | 0.0846 | 0.9362 | 0.9527 | 0.9444 | 0.9864 |
|
76 |
+
| 0.001 | 18.0 | 3960 | 0.0868 | 0.9374 | 0.9532 | 0.9453 | 0.9864 |
|
77 |
+
| 0.0009 | 19.0 | 4180 | 0.0842 | 0.9381 | 0.9536 | 0.9458 | 0.9868 |
|
78 |
+
| 0.0009 | 20.0 | 4400 | 0.0842 | 0.9376 | 0.9541 | 0.9458 | 0.9866 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.44.2
|
84 |
+
- Pytorch 2.2.0+cu121
|
85 |
+
- Datasets 2.21.0
|
86 |
+
- Tokenizers 0.19.1
|